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Abstract

PCle devices, such as NICs and SSDs, are frequently underuti-
lized in cloud platforms. PCle device pools, in which multiple
hosts can share a set of PCle devices, could increase PCle
device utilization and reduce their total cost of ownership.
The main way to achieve PCle device pools today is via PCle
switches, but they are expensive and inflexible. We design
Qasis,! a system that pools PCle devices in software over
CXL memory pools. CXL memory pools are already being
deployed to boost datacenter memory utilization and re-
duce costs. Once CXL pools are in place, they can serve as an
efficient data path between hosts and PCle devices. Oasis pro-
vides a control plane and datapath over CXL pools, mapping
and routing PCle device traffic across host boundaries. PCle
devices with different functionalities can be supported by
adding an Oasis engine for each device class. We implement
an Oasis network engine to demonstrate NIC pooling. Our
evaluation shows that Oasis improves the NIC utilization by
2x and handles NIC failover with only a 38 ms interruption.

CCS Concepts: « Software and its engineering — Op-
erating systems; - Computer systems organization —
Cloud computing; - Hardware — Emerging technologies.
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1 Introduction

Motivation. PCle devices, such as NICs, SSDs, and acceler-
ators, account for a significant portion of both capital and
operational costs of servers [3, 79, 149]. Cloud providers like
AWS and Azure deploy servers that physically connect to
multiple SSDs over PCle [24, 118], and have access to at
least one high-bandwidth NIC. For each server, NICs and
SSDs each incur a capital expenditure (CapEx) of around
$2,000, together making up approximately 20-40% of the to-
tal server cost [67, 68]. Meanwhile, these devices also drive
operational expenditure (OpEx); at Azure, NICs and SSDs
each contribute about 13% of total server power consump-
tion [149], adding significantly to server operational costs.
In addition, recent work shows that storage devices account
for significant embodied carbon emissions [126].

However, PCle devices are largely underutilized [83, 128,
133]. At the same time, much of the focus of operators and the
systems community has been on achieving high utilization
for CPU and memory [70, 73, 94, 99, 124, 151].

There are three main causes that lead to low utilization.
First, PCle resources, such as NIC bandwidth and SSD ca-
pacity, are often allocated conservatively to satisfy the peak
demand of each workload [111, 136, 147]. This leaves allo-
cated resources underutilized most of the time. We find that
the P99.99 utilization of the allocated NIC bandwidth within
a rack is only 20% at Azure (§2.2). However, due to the tight
coupling between PCle devices and hosts, multiplexing PCle
resources among hosts to improve utilization is challenging.

Second, unallocated PCle resources could be stranded at a
host when the host depletes one type of resource (e.g., CPU
cores, memory, NIC bandwidth, or SSD capacity) because ad-
ditional VMs or containers cannot be scheduled to consume
the unallocated resources [115, 136]. We find that 33% of SSD
capacity and 27% of NIC bandwidth are stranded at Azure,
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in other words, they are not even allocated to workloads,
resulting in low utilization.

Third, some datacenters provision redundant NICs at each
host to ensure network connections in case of NIC fail-
ures [7, 12, 48]. Since only a small fraction of hosts will
experience NIC failures, the redundant NICs lower overall
NIC utilization even further.

One promising approach to improve PCle device utiliza-
tion is to share a pool of PCle devices among several hosts,
which we term PCle device pooling. Pooling can mitigate
allocated-but-underutilized PCle devices by oversubscribing
a smaller set of PCle devices across hosts. For example, cloud
operators may choose a configuration where every three
hosts share a single NIC. Pooling also addresses stranded
resources since hosts can use unallocated PCle resources at
other hosts. In addition, pooling allows hosts to share a few
redundant PCle devices instead of provisioning redundant
devices for each host.

Existing solutions. There are only two ways to pool PCle
devices available today: using PCle switches [2, 103, 122],
and disaggregating PCle devices over RDMA [44, 75, 117].

PCle switches allow hosts and a pool of PCle devices to
connect to a common switch, which enables any host to uti-
lize any device in the pool [19, 23, 34, 38]. However, deploy-
ing PCle switches is costly and inflexible [103], which hin-
ders their adoption in datacenters. Deploying PCle switches
in a rack adds up to $80,000 [13] due to the expenses of PCle
switches, switch software, host adapter cards, and cabling.
Such high costs can easily outweigh the cost savings of pool-
ing, leading to a negative return on investment (ROI). In ad-
dition, each type of PCle switch can only be used for specific
use cases and only supports limited PCle devices [19, 23, 34].
For example, Liquid’s SmartStack only pools GPUs [34], and
GigalO’s FabreX has different pooling appliances for storage
devices and accelerators [20, 21].

The second approach is disaggregating via RDMA. RDMA
cannot be used to disaggregate NICs, and many other types
of PCle devices that lack P2P DMA support [46], such as
accelerators. Although disaggregating SSDs over RDMA is
common in cloud environments [5, 22, 75], local SSDs remain
in wide use.? In addition, RDMA has relatively high latency.

Our work. We propose Oasis, a system that pools PCle de-
vices in software over Compute eXpress Link (CXL) memory
pools. Recent work shows that CXL memory pools can miti-
gate stranded memory [115], improve memory utilization,
and scale up in-memory databases [69, 85, 100, 113, 115].

2For example, AWS has tried to remove local SSDs from their offers, but
brought them back due to customer demand. E.g., M6i supported local
NVMe drives, M7i did not support local NVMe drives and was introduced
in 2023 [77]. AWS later introduced 17ie [78] with local NVMe drives.
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Figure 1. Oasis enables hosts to access any PCle device
attached to another host in the same CXL pod, forming a
logical pool of PCle devices.

Hardware vendors have also started offering CXL mem-
ory devices with pooling capabilities [32, 56, 125].> A CXL
pod [159] consists of multiple hosts within a rack, allow-
ing these hosts to dynamically allocate memory from the
pool based on demands. Recent work shows how to build
CXL pods with hardware available today for about $600 per
host [82] without using expensive CXL switches.

The key argument of Oasis is that CXL pools are already
economically justified for memory, and the same investment
can unlock PCle device pooling at near-zero extra cost. Oasis
is the first end-to-end prototype that empirically supports
this argument with off-the-shelf CXL 2.0 devices, delivering
immediate benefits in total cost of ownership (TCO), near-
native performance, and tens-of-milliseconds failover time.

Oasis uses CXL pools as a building block for implementing
PCle device pooling in software (Figure 1). CPUs and PCle
devices located at different hosts can communicate with each
other over a shared CXL memory region. Shared CXL memory
can be accessed via load/store instructions from CPU and
via DMA from PCle devices, just like regular memory. CXL
pools provide sufficient bandwidth and negligible latency
overhead to pool PCle devices (§2.3).

However, CXL memory pool devices available today are
not cache-coherent across hosts. Although the CXL 3.0 spec-
ification introduces an optional cross-host hardware coher-
ence flow [11], the implementation requires expensive hard-
ware changes on both the processor and the device [74, 105,
143, 145]. To make Oasis compatible with hardware available
today, we do not assume cache-coherent CXL devices.

The lack of cache coherence introduces two challenges
for Oasis. First, adding cache line invalidations and fences
on every access to allow a PCle device to access I/O buffers
posted by another host could incur significant performance
overhead. To overcome this challenge, Oasis exploits the
observation that PCle devices often bypass CPU caches and

3Although advanced pooling features (e.g., Back Invalidation (BI)) are only
standardized in the recent CXL 3.0 specification [11], the widely adopted
CXL 2.0 specification already provides the necessary functionality for CXL
memory pools (§2.3)
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access memory directly via DMA. Qasis safely avoids un-
necessary cache line invalidations and fences to minimize
performance overhead.

Second, signaling I/O requests and completions between
workloads and PCle device drivers (e.g., Mellanox NIC driver)
between different hosts requires an efficient message chan-
nel over shared CXL memory. However, existing message
channels designed for CXL either assume cache-coherent
shared memory [121, 152, 156] or have performance and
correctness bugs since they make unrealistic assumptions
on non-coherent shared memory [119]. We identify the key
factors that affect the message channel performance using a
real CXL memory pool, and propose a novel message chan-
nel optimized for non-coherent shared memory. Our design
improves the message channel throughput by 29x.

Similar to VirtIO [138], Oasis provides a common datapath
and can support different PCle device classes (e.g., network,
storage) by implementing an engine specific to a device class.
We implement a network engine to pool NICs in container-
ized environments. We focus on networking in containerized
environments, where existing systems achieve state-of-the-
art I/O performance [92, 93, 140, 155]. We open source Oasis
at https://bitbucket.org/yuhong_zhong/oasis.

Our evaluation shows that the Oasis datapath only in-
curs single-digit ps overhead. For comparison, typical cloud
network latencies are 50-110 ps (§2.1). We replay a produc-
tion network packet trace and demonstrate that the Oasis
network engine improves the aggregated NIC bandwidth
utilization by 2x with negligible performance overhead. In
addition, we show that Oasis handles a NIC failure transpar-
ently within 38 ms.

Contributions. We make the following contributions:

1. We build Oasis, the first system to pool PCle devices in
software over CXL memory pools. We show that pooling
PCle devices can greatly improve their utilization.

2. We propose a new message channel over non-coherent
shared CXL memory in Oasis. We identify the key design
choices to optimize the channel’s performance.

3. We implement a network engine in Oasis. The evalua-
tion shows that Oasis improves utilization, incurs low
overhead, and supports efficient device failover.

2 Background and Motivation

This section describes typical NIC and SSD configurations
(§2.1), why these devices have low utilization (§2.2), and
explains why we build on CXL memory pools (§2.3).

2.1 Cloud NIC and SSD Configuration

We focus on multi-tenant cloud hosts that can serve contain-
ers or virtual machines (VMs) [92, 147, 149]. As a concrete
example, we consider hosts that serve regular VMs on AWS
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Type Bandwidth IOPS Latency  Count
NIC 26 GB/s 4 MOp/s/core  50-110 ps ~ 1-2
SSD 5 GB/s 0.5 MOp/s 100 ps 6

Table 1. Performance requirements for NICs and SSDs.

and Azure. Table 1 summarizes NIC and SSD performance
requirements for typical hosts.

AWS and Azure hosts currently use 200 Gbps NICs [63, 64].
VM networking typically only uses a fraction of this band-
width, e.g., 50 Gbps on m8g.48xlarge [66]. The remainder
is likely used for RDMA traffic to storage backends [75, 96,
117]. To estimate bandwidth requirements, we account for
Ethernet line-coding [58, 61]. In terms of packets per sec-
ond (IOPS), independent tests have shown limits of about
two million operations per second (MOp/s) [59]; we thus
use the higher estimates from Google’s Snap [123]. Multi-
tenant clouds usually employ a sophisticated host network
stack [91, 123]. VMs on Google Cloud Platform exhibit 65 ps
P50 and 111 ps P99 network latency [139] with kernel bypass.

Current AWS hosts offer six local NVMe drives, e.g., on
i8g.24xlarge [66]. AWS does not specify the expected band-
width or IOPS. We thus use peak performance numbers from
a datacenter SSD [65], with a typical latency of 100 us for
random accesses. Azure hosts offer similar configurations
with lower sustained bandwidth/IOPS estimates [62].

Overall, fully disaggregating one NIC and six SSDs re-
quires around 56 GB/s, multiple MOp/s (millions of opera-
tions per second) [92, 123], and low us latency overheads.

2.2 Why are NICs and SSDs Underutilized?

Cloud operators typically allocate resources explicitly to in-
stances (i.e., containers or VMs), including CPU cores, mem-
ory capacity, SSD capacity, and NIC bandwidth [31, 110, 147].
Low SSD and NIC utilization is mainly caused by three rea-
sons: 1) hosts “strand” resources and cannot allocate them,
2) allocated resource remain underutilized by instances, and
3) redundant PCle devices for fault tolerance.

Reason 1: Stranded SSDs and NICs. Cloud workloads
are heterogeneous as there are many instance types with
different resource requirements [4, 18, 52]. This leads to
complex bin-packing problems [98, 101, 142], which make
it hard to match host resource ratios to demands across the
data center [115]. A host accepts new instances until it fills
up along one dimension (e.g., memory), leaving the other
dimensions stranded (e.g., SSD capacity or NIC bandwidth).
Stranded resources cannot be allocated to new instances,
which lowers average device utilization.

We quantify stranded resources in a production allocation
trace at Azure. The trace records the allocation and deallo-
cation time, the scheduled host, and the resources allocated
for each instance. We observe that 27% of NIC bandwidth,
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Figure 2. Average percentage of stranded resources across
racks in a production cluster at Azure. This simulation shows
that pooling SSDs and NICs across pods reduces stranding
with increasing number of hosts in the pod.

33% of SSD capacity, 5% of CPU cores, and 9% of memory ca-
pacity are stranded on average. High NIC and SSD stranding
motivates pooling these devices across hosts.

Pooling enables hosts to access NICs and SSDs attached to
another host in the same “pod”. This reduces stranding and
would allow cloud providers to deploy fewer devices to serve
the same workload. We quantify the benefits of pooling by
using the same allocation trace and randomly assigning hosts
to pods. Repeated simulations find the minimum number of
devices required to successfully place all instances on the
same hosts as in the trace. Figure 2 shows that even small
pod sizes can greatly reduce the percentage of stranded SSD
capacity and NIC bandwidth. With a pod size of eight hosts,
the provider could provision 16% less NIC bandwidth within
each pod. Similarly, these pods can reduce the percentage
of stranded SSD capacity from 33% to 7%. This reduces SSD
capacity required in each pod by 26% which is equivalent
to removing the SSDs from two of the eight hosts. Note
that resource stranding is only one of the majors sources
of PCle device underutilization. We now turn to the second
and even more major source of underutilization: allocated
but underutilized devices.

Reason 2: NIC bandwidth is underutilized. To study the
utilization of allocated NICs, we randomly sample two racks
(rack A and rack B) among previous generation clusters at
Azure. These racks are actively used by production work-
loads. We conservatively select the four hosts with the most
network traffic in each rack. The hosts in rack A use 100 Gbps
NICs, and 90% of the total NIC bandwidth across the four
hosts is allocated including a large fraction for RDMA traffic.
The hosts in rack B use 50 Gbps NICs and all NIC bandwidth
is allocated. We capture all inbound and outbound packets
of those hosts at their ToR switch over 5 minutes.

Figure 3 shows an excerpt of the inbound NIC bandwidth
trace of the four hosts at rack A within a one-second period.
Figure 3 shows that although the inbound bandwidth usage
of host 1 reaches 40 Gbps, it is underutilized most of the time.
Note that the bandwidth is highly variable and bursty. While
we calculate bandwidth at 10 ps granularity, individual pixels
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Figure 3. Inbound network traffic of 4 hosts in a busy rack
at Azure.

Host1 Host2 Host3 Host4 Aggregated
Rack A(In) 39%  30% 0% 23% 10%
Rack A (Out) 40%  39% 17% 32% 10%
Rack B (In)  39% 75% 52% 79% 20%
Rack B (Out) 47%  63%  47% 78% 20%

Table 2. NIC Bandwidth Utilization at P99.99. The last col-
umn shows the utilization of a hypothetical pooled NIC that
aggregates bandwidth across 4 hosts.

are wider that 10 ps, which makes this plot appear more busy
than it is. In fact, host 1’s P99 bandwidth utilization is less
than 3%, while its P99.99 utilization reaches 39%.

This bursty nature of network traffic leads to the under-
utilization of allocated NIC bandwidth. One may consider to
oversubscribe the NIC bandwidth within a host by scheduling
additional instances. However, each instance requires other
resources (e.g., CPU cores, memory capacity) and typically
these resources are not available. A similar observation was
also recently made at Azure where CPU cores and memory
are the primary allocation bottleneck [136].

A promising approach is multiplexing the network traffic
across multiple hosts within a rack. In fact, many datacenters
today already oversubscribe the uplink bandwidth of ToR
switches by a 3:1 ratio [8, 14, 41, 97], which indicates that
the aggregated NIC bandwidth utilization within a rack is
less than 33% even at the peak. From our packet traces, we
also observe that the aggregated NIC bandwidth among the
4 hosts does not exceed 20% at the 99.99 percentile in both
rack A and rack B (Table 2). This indicates that these four
hosts can even share a single NIC without degrading the
peak performance, which will improve the aggregated NIC
utilization at P99.99 from 20% to 80%.

Reason 3: Redundant NICs to tolerate failures. Many
cloud hosts use only a single NIC to keep costs low. However,
network failures are relatively common [118, 127, 131]. If a
host’s network fails, the entire host becomes unreachable
and needs to wait for repair [118].

Network failures are caused by switch linecard failures [144],
ToR to host cable issues (such as dust on connectors or cable
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breaks), and NIC failures [118]. They are commonly hard
to diagnose [108] and cloud providers often prefer quick
mitigations instead of long root cause analysis [153].

Providers can design hosts with redundant NICs to ensure
availability during NIC failures [7, 12, 48]. For example, AWS
recommends on-premises hosts running AWS services to
have redundant NICs [7]. However, NICs are expensive and
power-intensive. While redundancy increases availability, it
further exacerbates low NIC bandwidth utilization.

Pooling NICs solves this problem by sharing a small num-
ber of redundant NICs across multiple hosts, rather than
provisioning redundant NICs for each host. If a NIC fails,
the pool can allocate a replacement to the affected host. This
reduces the number of redundant NICs needed, lowers costs,
and improves device utilization.

Takeaway. In conclusion, not only is each one of these
sources of PCle device underutilization significant on its own,
but they compound. In other words, for most cloud operators,
a significant percentage of PCle devices are stranded (i.e.,
have zero utilization), and even the ones that are allocated
have very low utilization (e.g., in the teens). For example,
in our traces, this leads to an overall 15% NIC bandwidth
utilization and 67% SSD capacity utilization.

Note that many PCle devices are not designed to oper-
ate at 100% utilization. For example, NICs often experience
high latency when bandwidth utilization exceeds 90% [141].
Therefore, when selecting a target utilization, datacenter
operators should account for potential performance degra-
dation at high utilization (e.g., targeting 80% utilization at
P99.99 for NICs).

2.3 CXL Memory Pools

CXL standardizes interconnect protocols between processors
and memory devices. We focus on CXL.mem which enables
CPUs and PCle devices to transparent load, store, and DMA
to CXL memory [11, 143]. All major server-class CPUs (Intel,
AMD, ARM) support CXL today.

Bandwidth. A single CXL 2.0/PCle-5.0 lane provides 4 GB/s
bandwidth in both the device-to-host and host-to-device di-
rections. In recent platforms (e.g., Intel Xeon 6, AMD 5th Gen
EPYC), each CPU socket has 64 CXL 2.0 lanes [1, 28], which
are a subset of the total PCle lanes, yielding 256 GB/s/direction
CXL bandwidth in total. CXL can utilize 92% of its link band-
width even for random accesses at 64 Byte granularity [143].

We find that 256 GB/s CXL bandwidth is sufficient for
pooling PCle devices, as the typical combined bandwidth
demand from NICs and SSDs is only 56 GB/s (§2.1). Even if
we consider 400 Gbps NICs (i.e., 50 GB/s bandwidth), 64 CXL
lanes still provide sufficient bandwidth.

Latency. The idle load-to-use latency of CXL memory is
about 2x the latency of local DDR5 memory. For example,
recent measurements on Intel Xeon 5 (EMR) report 2.15%
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higher latency [143], and our own measurements on AMD
5th Gen EPYC show 2.29x higher latency.

Note that the latency overhead introduced by CXL (hun-
dreds of nanoseconds) is significantly lower than the typical
end-to-end I/O latency, which is on the order of tens of mi-
croseconds (§2.1). Prior work also shows that placing I/O
buffers in CXL memory incurs minimal overhead [157].

CXL pod designs. A CXL pod is formed by connecting a set
of CXL memory devices to multiple hosts [104, 105, 115, 159].
Some proposals use CXL switches to build pods [57], but
switches are fairly expensive [81, 82, 114]. Thus, industry
momentum is to use multi-ported memory devices (MHD)
that directly connect to multiple hosts [32, 56, 82, 85, 90,
100, 115, 120, 125]. A single MHD today has up to 20 CXL
ports [56], and multiple MHDs can be combined to scale to
larger CXL pod sizes [82]. With proposals to replace 40% of
host memory with CXL [115], we expect CXL pods to offer
multiple TBs of memory.

Shared CXL memory. A CXL memory pool can be used
as shared memory across all the hosts in a CXL pod on cost-
effective CXL 2.0 devices available today [82]. Shared CXL
memory has the potential to speed up RPCs, key-value stores,
and distributed databases [69, 71, 104, 105, 119, 121, 156].

While CXL 3.0 and later specifications introduce support
for hardware coherence across multiple hosts [11, 143], no
CPUs or CXL devices support this feature today.

Existing use cases. Most current CXL memory use cases
focus on expanding memory capacity and utilizing shared
memory rather than increasing bandwidth, resulting in typi-
cally low CXL link bandwidth usage:
1. Pooling memory across VMs [115]: Only inactive VM
memory is offloaded to CXL, with a maximum of 2 GB/s
CXL bandwidth per host.

2. Scaling up databases [104, 105]: Peak CXL bandwidth
usage is 3 GB/s due to transaction processing overheads.

3. Pooling memory across databases [69]: OLTP workloads
peak at 2 GB/s CXL bandwidth, while OLAP workloads
might saturate CXL links.

Thus, CXL links generally offer sufficient bandwidth to sup-
port PCle device pooling alongside most other use cases. We
also discuss how explicit Quality of Service (QoS) control
can mitigate interference across use cases (§6).

3 Oasis: Pooling PCle in Software

In this section, we present the design of Oasis, which enables
pooling PCle devices in software. Oasis allows hosts to access
PCle devices located at any host within a CXL pod. With
Oasis, datacenter operators can safely provision fewer PCle
devices per pod, improving PCle device utilization without
compromising peak performance or availability.
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A key design goal is to reuse existing CXL 2.0 pod designs
that are available today. These pods target memory pool-
ing use cases [115] and thus do not offer hardware cache
coherence.

As different PCle device types provide different function-
alities and have different operating flows, Oasis provides a
common datapath that is reused by different device types.
A device type can be supported by adding an Oasis engine
specific to the type. We also design a centralized control
plane for all devices and instances, called a pod-wide allo-
cator, which maps the devices to hosts, and handles load
balancing and failure mitigation.

We first present an overview of Oasis (§3.1), and then de-
scribe the common datapath (§3.2). Next, we describe the
design of our Oasis network engine (§3.3) and storage en-
gine (§3.4) for NIC and SSD pooling, respectively; the storage
engine is designed but not implemented. In §3.5, we describe
the Oasis control plane, the pod-wide allocator.

3.1 Overview

At a high level, the design of Oasis is similar to PCle device
virtualization — virtualization bridges VMs with the devices
at the host level [76, 87, 134, 138, 148], while Oasis bridges
containers or VMs with devices located at other hosts. We
assume that devices are allocated at the granularity of an
instance, which could be either a container or a VM. Note
that a single device may be allocated to multiple instances
for oversubscription.

Oasis provides a common datapath to enable an instance
to communicate with PCle devices located at a different host
over non-coherent shared CXL memory. The datapath allows
I/O buffers to be allocated in the shared CXL memory so that
they can be accessed by any hosts directly. This minimizes
the need for data copying on the critical path. In addition,
the datapath provides message channels to signal requests
and completions between instances and devices.

To support various PCle device types with different func-
tionalities, each device type can add an Oasis engine to im-
plement the operating flows specific to the type. An engine
includes two components: a frontend driver, and a backend
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Figure 5. The pod-wide allocator allocates PCle resources
to instances. It also manages load balancing and failover.

driver (Figure 4). The frontend driver at each host provides
type-specific interfaces to the local instances. On the other
hand, the backend driver only runs on the hosts that are
directly connected to the devices, and it interacts with the
devices using their native PCle device driver (e.g., DPDK’s
NVIDIA MLX5 Ethernet Driver [17]). The frontend driver
forwards I/O operations to the corresponding backend dri-
vers over the Oasis datapath.

The Oasis control plane, which we call the pod-wide allo-
cator, is responsible for mapping PCle devices to instances
within a pod (Figure 5). The allocator tracks the usage of
each device and assigns resources to newly created instances.
It can also dynamically migrate instances to other devices
for load balancing or failover. The allocator’s policies allow
the operator to include static policies such as different in-
stance types (e.g., provisioning certain instances with more
NIC bandwidth or SSD capacity), as well as dynamic policies,
such as prioritizing certain instances over others when a
shared device is under load.

3.2 Datapath Over Shared CXL Memory

Oasis provides a common datapath to perform I/O operations
across host boundaries. This datapath should serve 56 GB/s
and at least 7 MOp/s at low latency (§2.1).

A typical I/O operation includes the following steps: the
CPU writes data to an I/O buffer, the CPU signals the rel-
evant device, the device reads data from the I/O buffer via
DMA, and the device signals the CPU that the request was
completed. Depending on the operation, the sequence can
be flipped (e.g., if the device sends data to the CPU). In Oasis,
both the I/O buffers and the signaling message channels are
allocated in shared CXL memory so that they can be accessed
by any hosts within a CXL pod.

Writing I/O buffers to cache-coherent shared memory
works out-of-the-box. However, without cache coherence,
the CPU and the device could potentially read stale data
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from an I/O buffer, resulting in data corruption. Similarly,
signaling messages written into CXL shared memory from
one host may never become visible to other hosts.

A naive approach would require invalidating CPU caches
before each read (with a fence to ensure the invalidation
completes before the read) and writing back CPU caches
after each write on CXL memory. Such frequent cache line
invalidations, writebacks, and fences would consume exces-
sive CPU cycles, increase I/O latency, and limit throughput.
The Oasis datapath overcomes this challenge by allowing
PCle devices to bypass CPU caches for I/O buffers (§3.2.1)
and with a novel message channel to signal I/O requests and
completions across different hosts (§3.2.2).

3.2.1 Minimize Coherence Operations for I/O Buffers.
To ensure cache coherence for I/O buffers, the datapath must
enforce that: 1) when an I/O buffer is passed between a
frontend and a backend driver on different hosts, it is fully
written to CXL memory, and 2) the receiving host should
read the buffer directly from CXL memory (not from its CPU
caches). Although cache line invalidations and writebacks at
the frontend driver are unavoidable, we find that the backend
driver can safely eliminate most of them.

To safely eliminate most cache line invalidations and write-
backs at the backend driver, Oasis exploits the observation
that PCle devices (e.g., NICs and SSDs) typically access I/O
buffers directly via DMA. DMA typically bypasses the CPU
caches except when using the “PCle allocating write flows”
feature, which is also known as DDIO on Intel platforms [26].
Due to security vulnerabilities, Intel recommends that DDIO
is disabled in multi-tenant cloud platforms [106, 112]. We
also find that disabling DDIO does not affect the performance
of state-of-the-art kernel-bypass network stacks [92, 93] with
a 100 Gbps Mellanox NIC. We thus find that assuming DDIO
is disabled is a reasonable tradeoff for Oasis’s benefits.

Besides DDIO, the other case where DMA may access CPU
caches is when the target cache line is already present in
the CPU caches. Therefore, the backend driver should avoid
bringing I/O buffers into the CPU caches. In our implemen-
tation, we find that this is achievable for both the network
and storage engines. Specifically, the CPU at the backend
driver almost never inspects I/O buffers (§3.3, §3.4).

As long as the PCle device always bypasses the CPU
caches when accessing I/O buffers, cache line invalidations
and writebacks at the backend driver can be eliminated. This
also removes the overhead caused by CPU-internal cache co-
herence. Specifically, we ensure that DMA-triggered snoops
miss all CPU caches, preventing invalidations or writebacks
that would introduce overhead at the backend driver.

3.2.2 Message Channels Over Non-Coherent Shared
Memory. For each pair of frontend and backend drivers, we
dedicate a shared-memory message channel in each direc-
tion to signal I/O requests and completions. Each message
channel has exactly one sender and one receiver.
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Data structure. Our message channel is a circular buffer
in shared CXL memory. By default, we allocate 8192 slots
for 16 B or 64 B messages. We find that 16 B messages are
sufficient for the network engine (§3.3), while 64 B messages
suffice for the storage engine (§3.4). Each engine uses a fixed
message size. The most significant bit of each message is
reserved as an epoch bit, which the receiver checks to see
if the slot holds a new message. The sender toggles this
bit whenever it overwrites the slot. Besides message slots,
each channel also includes an 8 B counter for the receiver to
indicate how many messages it has consumed, preventing
the sender from overwriting unread messages.

Optimizations for non-coherent CXL memory. To main-
tain cache coherence, prior work on non-coherent shared
CXL memory [119, 157] proposes bypassing CPU caches en-
tirely when accessing message channels, using either non-
temporal memory operations? [25, 39] or cache line invali-
dations [9, 10]. However, we find that bypassing CPU caches
performs poorly, as prefetching data into CPU caches is crit-
ical for maximizing message throughput per core.

Prefetching cache lines with non-coherent memory is chal-
lenging. We observe that CPU cache prefetching, whether
initiated by hardware prefetchers or software prefetch in-
structions, becomes ineffective without cache coherence. As
we show later, our design enables effective prefetching over
non-coherent memory by carefully inserting cache line inval-
idations to “unblock” prefetching, which increases message
throughput by over an order of magnitude.

We present our findings and optimizations through four
microbenchmarks on a two-socket host® as follows:

@ To show the suboptimal performance of bypassing CPU
caches, we benchmark a baseline message channel with 16 B
messages, where the receiver busy-polls the channel tail and
issues a cache line invalidation and a fence (i.e., CLFLUSHOPT
and MFENCE) before each poll. The sender performs a cache
line writeback (i.e., CLWB) either after filling a cache line (i.e.,
four messages) or when the sending rate is low.

As expected, the 0.6 ps idle latency is approximately twice
the CXL access latency (Figure 6), since each message passing
requires a CXL write and a subsequent CXL read. However,
this baseline achieves only 3.0 MOp/s.

Note that to achieve 7.0 MOp/s end-to-end I/O through-
put (§2.1), since each I/O incurs two messages (request and
completion), a total message throughput of 14.0 MOp/s with
low latency is required.

40On x86 platforms, the write-back (WB) memory type does not support
non-temporal reads [25, 40]. Therefore, using non-temporal reads requires
either uncacheable (UC) or write-combining (WC) memory types, both of
which bypass CPU caches entirely.

SWe use a two-socket host, rather than two separate hosts (§5), to measure
one-way message-passing throughput and latency, as the two sockets share
the same time source. The system is an Intel Xeon 8592 dual-socket server,
with each socket connected to the CXL pooling device via X8 lanes. The
CXL memory ranges exposed to the two sockets are not cache coherent.
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Figure 6. Throughput and median latency of one-way mes-
sage passing with different message channel designs. Starting
from “Naive Prefetching”, we incrementally add “Invalidate
Consumed”, and then extend it with “Invalidate Prefetched”.
The target throughput is shown as the gray dashed line.

@ We also show that naive CPU cache prefetching offers
limited benefits. In this setup, the receiver invalidates the
current cache line only after an empty poll, and it issues
software prefetch instructions (i.e., PREFETCHT®) for subse-
quent cache lines after each poll that retrieves a new mes-
sage. Prefetching 16 cache lines yields the best performance,
but only increases maximum throughput from 3.0 MOp/s to
8.6 MOp/s (Figure 6).

The key issue making CPU cache prefetching ineffective
is that, without cache coherence, a cache line containing
consumed messages in the receiver’s CPU caches is not auto-
matically invalidated when the sender overwrites it with new
messages. This stale cache line prevents prefetching from re-
trieving new messages from CXL memory, since CPU prefetch-
ers ignore cache lines already present in the caches.

@ To address this issue, we modify the receiver to invali-
date a cache line once all messages in it have been consumed,
allowing future prefetching to bring in new messages to the
receiver’s CPU caches. This optimization increases the max-
imum throughput from 8.6 MOp/s to 87.0 MOp/s (shown as
“+ Invalidate Consumed” in Figure 6).

However, we observe that latency rises sharply starting
at 8.6 MOp/s before decreasing again at throughputs above
30.0 MOp/s. We find that this is also caused by stale cache
lines in the receiver’s CPU caches. In addition to the cache
lines consumed by the receiver, prefetching itself can also
bring in stale cache lines. For example, when the receiver
prefetches N cache lines from CXL, it is possible that only
M (M < N) of them contain new messages, especially when
the sending rate is moderate. The remaining (N — M) stale
cache lines prevent effective prefetching in the future.

@ To address the latency issue, we further modify the
receiver so that after an empty poll, it invalidates not only
the current cache line but also the subsequent prefetched
cache lines. As shown as “+ Invalidate Prefetched” in Figure 6,
this optimization reduces latency from 1.2 ps to 0.6 ps at the
target throughput of 14.0 MOp/s.
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Figure 7. The network transmission (TX) path from an in-
stance on Host A to a NIC on Host B. The instance first
writes packet to a buffer on shared CXL memory, and then
signals the frontend driver, which forwards the signals to the
backend driver on host B through message channels. Host B
then signals the NIC to DMA-read the packet from CXL.

3.3 Network Engine

The network engine consists of a frontend driver and a back-
end driver. The frontend driver runs on each host and pro-
vides local instances with a packet I/O interface to transmit
(TX) and receive (RX) packets. It forwards TX and RX pack-
ets, as well as their completions, between local instances and
the corresponding backend drivers.

The backend driver, in contrast, runs only on hosts with
local NICs. It forwards TX and RX packets, as well as their
completions, between frontend drivers and NIC queue pairs.
The frontend and backend drivers (potentially on different
hosts) signal requests and completions over message chan-
nels provided by the Oasis datapath (§3.2.2). The NIC queue
pairs are exposed to the backend driver through the NIC’s
native device driver (e.g., DPDK’s NVIDIA MLX5 Ethernet
Driver [17]).

When a new instance is launched, the frontend driver
requests the pod-wide allocator (§3.5) to allocate a NIC for
the instance. The frontend driver then registers the instance
with the allocated NIC’s backend driver.

Similar to other high-performance network stacks [54, 92,
93, 132, 155], the network engine dedicates two cores per
host for busy polling: one for the frontend driver and one
for the backend driver. Hosts without a NIC do not run the
backend driver and therefore use only one dedicated core.

3.3.1 Transmit and Receive Flows. We describe the end-
to-end workflow of packet transmission and reception in the
network engine, using a Mellanox NIC as an example.

Transmitting a packet. On the transmit side, the frontend
driver is allocated with a 4 GB shared CXL memory region,
which is used to allocate a per-instance TX buffer area (64 MB
by default) to each local instance.

To send a packet, the instance’s network stack (e.g., the
Ethernet layer) allocates a TX buffer from its TX buffer area
and writes the packet payload to it. The instance network
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stack then signals the frontend driver along with the pointer
to the TX buffer to send the packet.

The frontend driver then writebacks the TX buffer from
CPU caches and signals the corresponding backend driver
by sending a 16 B message that contains an 8 B TX buffer
pointer, a 2 B packet size, a 1 B opcode, and a 4 B instance IP.
After receiving the message, the backend driver then calls
the DPDK NIC driver to post a work queue entry (WQE) to
the NIC’s TX queue with the TX buffer pointer. Note that the
backend driver never inspects the TX packet buffer (§3.2.1).

When processing the WQE, the NIC reads the TX buffer
via DMA. Once the packet is transmitted, the NIC notifies
the backend driver, which propagates the completion signal
back through the frontend driver to the instance.

Receiving a packet. On the receiving side, each backend
driver is allocated a 4 GB shared CXL memory region for
each NIC, designated as the per-NIC RX buffer area. The
backend driver posts RX descriptors that point to buffers in
this area to the NIC’s RX queue, so that the NIC writes RX
packets directly into these buffers.

When the NIC receives an RX packet, it will write the
packet to an RX buffer via DMA and notify the backend
driver through the DPDK NIC driver. The backend driver
then signals the corresponding frontend driver by sending a
16 B message that contains an 8 B RX buffer pointer, a 2 B
packet size, a 1 B opcode, and a 4 B instance IP.

The backend driver uses the RX packet’s destination IP
to identify the target instance. To avoid inspecting the RX
buffer (§3.2.1), it uses flow tagging [16], which allows the NIC
to match RX packets to instances based on their destination
IPs. When registering a new instance, the backend driver
allocates a tag for it. The backend driver can then rely on
the NIC-provided tag to determine the instance associated
with an RX packet, without directly inspecting the buffer.®

Upon receiving the message, the frontend driver copies
the packet from the RX buffer in the shared CXL memory
to the target instance’s local memory, as required for isola-
tion (§3.3.2). The frontend driver then invalidates the RX
buffer from CPU caches, notifies the instance of the RX
packet, and signals completion to the backend driver. The
backend driver subsequently recycles the RX buffer.

3.3.2 Security and Isolation. We assume that the net-
work engine and the NIC are fully trusted. The frontend
driver, backend driver, native PCle device driver, and the
NIC itself have access to the entire shared CXL memory.

In contrast, instances are untrusted and can only access
their allocated TX buffer area within the shared CXL memory.
This restriction requires a packet copy from the per-NIC RX
buffer area to the instance’s local memory in the RX datapath,

OTf the NIC does not support flow tagging or fails to match an RX packet,
the backend driver inspects the packet payload to extract the relevant
headers and identify the target instance. After inspection, the backend
driver invalidates the RX buffer from its CPU caches.
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a design also adopted in prior work such as Junction [92]
to enable faster RX buffer recycling. Therefore, instances
cannot inspect packets belonging to other instances.

3.3.3 NIC Failover. Oasis allows cloud operators to mit-
igate network failures without provisioning multiple NICs
per host (§2.2). When a NIC failure occurs, Oasis reallocates
the affected instances’ network traffic to another NIC with
minimal interruption and no application involvement.

To this end, we reserve a backup NIC per pod for failover.
We keep the back NIC underutilized, i.e., only node-local
instances use the backup NIC and remote instances use
other NICs in the pod. When a new instance is launched, the
frontend driver also registers the instance with the backup
NIC’s backend driver. Registering with the backup driver at
launch time ensures that the instance can immediately use
the backup NIC when its allocated NIC fails.

The backend driver detects NIC failures by monitoring
link status, allowing it to capture hardware faults, cable dis-
connections, and switch linecard issues. When a failure is
detected, the backend driver notifies the pod-wide allocator
via their message channels. The allocator then informs all
frontend drivers using the failed NIC, which immediately
reroute TX packets to the backup NIC. Because TX packets
already reside in shared CXL memory accessible to all hosts,
no additional packet copy is required.

Besides sending TX packets through the backup NIC, we
also need to notify the switch to reroute RX packets to the
backup NIC. To minimize packet loss, we let the backup
NIC “borrow” the failed NIC’s MAC address by sending pack-
ets with the failed NIC’s MAC address as the source MAC
address to the switch. The switch will then update the MAC-
address-to-port mapping to map the failed NIC’s MAC ad-
dress to the switch port of the backup NIC, allowing RX
packets to be routed to the backup NIC immediately without
involving applications. Note that this technique cannot dis-
tribute traffic of a failed NIC across multiple NICs. Therefore,
we need to reserve sufficient bandwidth on the backup NIC.

3.3.4 Load balancing. Beyond failover, the network en-
gine also supports gracefully migrating an instance’s net-
work traffic from one NIC to another for load balancing.
When the pod-wide allocator initiates a graceful migra-
tion, the frontend driver first registers the instance with
the new NIC’s backend driver. It then notifies the instance
of the MAC address change. The instance’s network stack
responds by broadcasting Gratuitous ARP (GARP) [29] to
announce the updated MAC address. During the transition,
the instance can receive RX packets from both the original
and new NICs, while TX packets are always sent through the
new NIC. After a grace period (5 s by default), the frontend
driver unregisters the instance from the original NIC’s back-
end driver, releasing its bandwidth for allocation to other
instances. Therefore, the instance’s network traffic can be
gracefully migrated to the new NIC without interruption.
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3.4 Storage Engine

The storage engine mirrors the structure of the network
engine. On each host, the frontend driver provides local
instances with a block device I/O interface and forwards I/O
requests and completions between local instances and their
corresponding backend drivers.

Similar to the network engine, the storage engine’s back-
end driver runs only on hosts with local SSDs. It forwards I/O
requests and completions between frontend drivers and the
SSDs’ submission queues (SQ) and completion queues (CQ).
The backend driver operates the SQ and CQ through the
SSDs’ native device driver (e.g., SPDK’s NVMe driver [53]).
The SSDs access I/O buffers in shared CXL memory directly
via DMA. Both the frontend and backend driver dedicate a
busy polling core per host.

Unlike the network engine, the storage engine uses 64 B
messages instead of 16 B messages between frontend and
backend drivers (§3.2.2). Each 64 B message mirrors the fields
of a 64 B NVMe command [43]. The backend driver never in-
spects I/O buffers for either read or write operations (§3.2.1).

Failure semantics. Unlike stateless NIC traffic, SSD re-
quests modify persistent media. Providing transparent SSD
failover would require the backup device to maintain an iden-
tical copy of the namespace (e.g., via RAID-1, erasure coding,
or replicated NVMe-oF targets). These mechanisms operate
above Oasis, so the storage engine simply propagates an I/O
error to the guest when the backend driver detects a drive
failure. In practice, cloud operators typically expose local
NVMe as ephemeral storage—for example, on AWS, instance-
store SSD data survives soft reboots but is lost upon stop or
terminate operations [60].

3.5 Pod-Wide Allocator

The pod-wide allocator is a logically centralized service that
maintains the authoritative mapping between instances and
PCle devices within a pod. It is never on the critical path of
data-plane I/O. The allocator stores all states in the shared
CXL memory and operates on renewable leases.

Monitoring. Every backend driver sends a telemetry record
to the allocator via message channels (§3.2.2) every 100 ms.
Each record includes load metrics (e.g., IOPS and bandwidth
utilization) as well as network health metrics (e.g., link status
and PCIe AER counters).

Device allocation. Instance placement is controlled by a
central cloud scheduler. When an instance is placed, the
allocator first tries to satisfy its allocations with host-local
NIC bandwidth and SSD capacity. If this is not possible, the
allocator greedily selects the devices with the lowest load.

Failure management. When a backend driver detects a
local NIC failure, it immediately notifies the allocator via the
message channels (§3.2.2). Host failures are instead inferred

110

Zhong et al.

from missing telemetry records. In either case, all leases
involving failed devices or hosts are revoked, and the affected
instances are reallocated to other devices. The allocator itself
is replicated with Raft [130], using RPCs transmitted over
the message channels (§3.2.2).

4 Implementation

The Oasis network engine is implemented in about 7,000
lines of C++ on top of Junction [92, 93], a state-of-the-art
network stack for containers. Junction provides a container
runtime to run unmodified Linux binaries, and a NIC virtu-
alization layer that exposes each container instance with a
virtual NIC backed by the host NIC. The container runtime
provides standard OS services, including a complete network
stack (TCP/UDP, IP, Ethernet), block device interfaces, inter-
process communication (IPC) (e.g., pipe()), and memory
management.

Junction’s NIC virtualization layer exposes a packet I/O
interface to each instance through IPC channels in local DDR
memory. We build the Oasis network engine’s frontend and
backend drivers based on this layer. The frontend driver pro-
vides each instance with a packet I/O interface via the IPC
channels in local DDR memory, while the backend driver
operates the NIC’s queue pairs using DPDK’s NVIDIA MLX5
Ethernet driver [17]. We extend both drivers with Oasis mes-
sage channels (§3.2.2) to enable cross-host message passing.
When a new instance is launched, it connects to a predefined
UNIX socket listened to by the frontend driver before the
IPC channels are created.

In the Oasis datapath, each message channel includes an
8 B counter that the receiver uses to indicate how many
messages it has consumed (§3.2.2). Due to the lack of cache
coherence, the sender must issue a cache line invalidation
and a fence (i.e., CLFLUSHOPT and MFENCE) before reading
the counter, while the receiver must issue a cache line write-
back (i.e., CLWB) after updating it. To minimize overhead,
the sender caches the counter and re-reads it only when all
slots indicated by the cached counter are exhausted, and the
receiver updates the counter only after consuming a large
batch of messages (by default, half of the channel’s capacity).

5 Evaluation
In this section, we seek to answer the following questions:
1. What is the performance overhead incurred by Oasis
when pooling NICs? (§5.1)
2. Can Oasis improve NIC utilization by multiplexing net-
work traffic across hosts? (§5.2)
3. Can Oasis fail over between NICs with minimum inter-
ruption? (§5.3)

Experimental setup. Our evaluation setup consists of two
AMD hosts and one CXL 2.0 memory device. The first host
uses an AMD EPYC 9825 144-core CPU, while the second uses
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Figure 8. Performance overhead of the Oasis network engine on four typical web applications.
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Figure 9. Performance overhead of the Oasis network engine
on memcached.

an AMD EPYC 9015 8-core CPU. Despite the different CPU
SKUs, we observe consistent CXL latency and bandwidth
across both hosts. Each host has 768 GB of local DDR5-5600
memory and a 100 Gbit Mellanox ConnectX-5 (CX5) NIC.

The two hosts are connected to one CXL device, each with
%8 lanes. The CXL device has 256 GB DDR5-4800 memory,
which is exposed to both hosts. Due to confidentiality re-
quirements, we do not disclose the raw access latency of the
CXL device. Instead, we report normalized latencies in §2.3.

We run Ubuntu 24.04 with Linux 6.8.0 on both hosts and
configure the kernel to expose CXL memory as DAX de-
vices [33]. Because the Linux CXL driver cannot recognize
the HDM decoder of our CXL device, we apply a small patch
to disable the CXL driver and instead use hmem [15] to expose
the CXL memory as DAX devices.

All systems are interconnected with a 100 Gbit Arista
7060X series switch. We use a Intel Xeon 8592 system with a
100 Gbit CX5 NIC as network load driver in all experiments.

5.1 Performance Overhead

Impact on Applications. We first measure the performance
overhead of the Oasis network engine on end-to-end applica-
tion performance. As a baseline, we run the application with
Junction [92] using a local NIC on the same host. We then
compare it against Oasis, where the application’s network
traffic is served by a remote NIC on another host.

Figure 8 shows the overhead with four typical web ap-
plications: a Python HTTP server [49], a Rust Rocket web
server [50], nginx [135], and Apache Tomcat [6]. Across all
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Figure 10. Performance overhead of the Oasis network en-
gine on a UDP echo microbenchmark with different packet
sizes.

applications, Oasis adds a consistent 4-7 ps latency over-
head at P50, P90, and P99 under low and moderate load.
At near-saturation load, both the baseline and Oasis experi-
ence latency spikes. We also measure the overhead on mem-
cached [37] (Figure 9), where similarly, the latency overhead
is consistently about 4-7 ps at all percentiles. Note that our
small setup leads to very low baseline latencies, compared to
the typical 50-110 ps observed in production clouds (Table 1).

Overhead breakdown. To understand the latency over-
head, we run a UDP echo microbenchmark with 75 B and
1500 B packets. In this setup, the client sends fixed-size UDP
packets to the server, which immediately echoes them back,
and the client measures the round-trip latency. Oasis consis-
tently adds 4-7 ps of overhead (Figure 10), indicating that
the overhead is largely independent of packet size.
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Load Payload (GB/s) Message (GB/s) Total (GB/s)
Idle 0.0 0.2 0.2
Busy (75 B) 0.7 1.6 23
Busy (1500 B) 12.0 15 13.5

Table 3. CXL link bandwidth usage under varying network
loads in Oasis. “Payload” bandwidth refers to reading and
writing packet payload buffers, while “message” bandwidth
denotes message channel traffic (e.g., busy polling).

To measure the impact of placing I/O buffers in CXL mem-
ory, we modify the baseline Junction to allocate TX and RX
buffer areas in CXL memory and rerun the UDP microbench-
mark. Figure 11 compares the P50, P90, and P99 latencies of
the baseline, the modified baseline with I/O buffers in CXL
memory, and Oasis. The results show that placing I/O buffers
in CXL memory incurs almost no additional latency, regard-
less of load or packet size. Most of the latency overhead in
Oasis comes from message passing across hosts between the
frontend and backend drivers.

Note that this overhead is higher than the 0.6 ps overhead
in the one-way message passing microbenchmark (Figure 6)
because we measure round-trip latency and, unlike the busy-
polling receiver, the frontend and backend driver cores also
handle other tasks (e.g., forwarding packets to local instances
or to NICs), which delays message passing.

We also measure and break down the CXL link bandwidth
consumed by Oasis in Table 3. With no network traffic, Oasis
consumes only 0.2 GB/s for busy polling in the message chan-
nels, since prefetching is triggered only when the channel
is not idle (§3.2.2). Under heavy traffic (about 4 MOp/s), the
message channels consume about 1.5 GB/s due to prefetching.
The bandwidth used for reading and writing packet buffers
depends on packet size; with 1500 B packets, 89% of the CXL
link bandwidth is spent on packet buffer accesses.

5.2 Utilization Benefits

Oasis allows operators to provision fewer NICs within a
pod by enabling multiple hosts to share a single NIC. To
demonstrate this, we replay the packet traces from §2.2 as
the traffic to two hosts.

From the inbound traces of host 1 and host 2 in rack A,
which record both packet arrival times and sizes, we use
two clients to generate matching UDP traffic to two hosts.
Each host echoes the packets back, and the clients record the
round-trip latency. In the baseline, each host uses its own
100 Gbit NIC, while with multiplexing both share a single
NIC on host 1. To capture the multiplexing interference, the
hosts run Oasis (not Junction) in both setups.

Figure 12 shows round-trip latencies with and without
multiplexing. The results show that Oasis multiplexes the
network traffic of two hosts with a single NIC with negligible
interference. Specifically, with multiplexing, the P99 latency
for host 1 remains unchanged, while host 2 experiences only
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Figure 11. Breakdown of Oasis latency overhead across
different packet sizes and load levels, using the UDP echo
microbenchmark.
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Figure 12. Round-trip latency distribution for the packet
trace replay experiment. Solid lines show the baseline (i.e.,
each host using its own NIC); dotted lines show multiplexing
(i.e., two hosts sharing one NIC at host 1).

a 1 ps increase. Importantly, multiplexing increases the ag-
gregated NIC utilization at P99.99 from 18% to 37%.

5.3 Failover

We now evaluate Oasis’s ability to handle a NIC failure, with
minimal disruption to an application. We run a 10-second
UDP echo microbenchmark to measure packet losses when
the NIC fails. To introduce a NIC failure, we disable the
switch port connected to the NIC after the microbenchmark



Oasis: Pooling PCle Devices Over CXL to Boost Utilization

2 7504 8 750 A

9] 9

2, g,

& E 500 A & E 500

= D + v

&% 250 B 250

#* #

0 T 0- T T T T
0 5 10 5.74 5.76 5.78 5.80

Time (s) Time (s)

(a) During the 10 s runtime (b) During the failure time

Figure 13. The number and duration of packet losses when
a NIC failure triggers the Oasis NIC failover.

starts running. Figure 13a depicts the number of lost packets
throughout the experiment, with a sharp spike at the time
of failure, after which Oasis is able to quickly fail over and
steer the traffic of the instance running the echo server to
the backup NIC. In Figure 13b, we zoom in to the time of
failure (around the 5th second of the trace), and we can see
the total failure time is roughly 38 ms.

We repeat the failover experiment with memcached, which
uses TCP instead of UDP. Figure 14a shows the P99 latency
over the 10 s experiment, with a sharp spike at the moment
of failure. As with the UDP case, Oasis quickly fails over and
restores request latency. Figure 14b shows that P99 latency
recovers within about 133 ms. The recovery takes longer
than with UDP because TCP is a reliable transport: packets
lost during the interruption accumulate at the client and are
delivered after failover, temporarily inflating latency.

To put the 38 ms and 133 ms failover time into perspec-
tive, an alternative to our approach could be to resume the
affected instance on a new host by reading its snapshotted
state from a backend storage service. But this would be ex-
tremely slow (on the order of seconds or more), and would
mean the application loses recent updates. Another alterna-
tive could be to replicate the application’s state in-memory
across multiple hosts, using a replicated state machine (RSM)
like Raft [130], which can tolerate host failures. Note that
such an approach would be very memory-intensive: it re-
quires replicating the state in memory 3X or more. Even
from an availability perspective, if the failed host happens
to be the leader, the time it takes to detect the leader fail-
ure and elect a new leader would typically take hundreds of
milliseconds at the minimum [130].

6 Discussion

Our prototype and evaluation focus on the question of fea-
sibility: can we pool PCle devices entirely in software over
today’s non-coherent CXL 2.0 memory devices with toler-
able overhead? While the results are encouraging, we ac-
knowledge several limitations and discuss potential ways to
address them.

CXL failures. In our experience, the most common CXL-
related failure arises from CXL link/cable faults. Addressing
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Figure 14. P99 latency of memcached when a NIC failure
triggers the Oasis NIC failover.

these failures requires a redundant CXL pod topology that
provisions multiple CXL links per host. Recent work explores
such resilient CXL pod designs [82], and we leave the inte-
gration of these topologies to future work. With such designs
in place, Oasis could tolerate CXL failures in much the same
way it already handles PCle device failures.

QoS control for CXL bandwidth. While CXL links gener-
ally offer sufficient bandwidth for Oasis to coexist alongside
other CXL use cases (§2.3), bandwidth-intensive use cases
(e.g., OLAP databases) may saturate CXL links and impair
performance. To mitigate this, Oasis’s pod-wide allocator
may rebalance traffic away from congested hosts. In addi-
tion, hardware-assisted bandwidth partitioning mechanisms
(e.g., Intel RDT [27]) can also enforce QoS and manage the
allocation of CXL link bandwidth across colocated use cases.

CXL 3.0 memory devices. CXL 3.0 memory devices with
cross-host cache coherence (i.e., Back Invalidation (BI) [11])
would allow hosts to access shared CXL memory directly,
without relying on cache line invalidation or writeback in-
structions. Oasis’s frontend—backend architecture, the net-
work and storage engines, failover mechanisms, and pod-
wide allocator are all compatible with CXL 3.0 and could
benefit from better message channel performance.

However, based on our conversations with CXL vendors,
there is significant doubt about the viability of cross-host
cache coherence, and thus Oasis does not rely on it.

CXL-attached devices. Device vendors have begun to de-
sign and produce PCle devices with a CXL interface. For
example, Samsung and Kioxia start to offer CXL-attached
SSDs [30, 51], although CXL-attached NICs are not yet com-
mercially available. Pooling devices with CXL interfaces can
be achieved by connecting them to CXL switches. Neverthe-
less, to ensure that Oasis remains deployable with today’s
hardware, we target host-attached PCle devices.

Single-threaded datapath. Our evaluation uses a single
I/O thread for each frontend driver and backend driver. This
choice simplifies software coherence but clearly underuti-
lizes high-bandwidth devices. Since the message channel
throughput scales linearly with additional channels, we be-
lieve a sharded multi-channel design is a straightforward
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extension. Such a design would enable adaptive scaling be-
yond a single I/O core, similar to Snap [123].

Scaling CXL bandwidth. Our evaluation matches a single
100 Gbps NIC with a X8 CXL link, which is a balanced match.
As discussed in Section 2.3, production systems use eight
times as many CXL lanes, which would scale CXL band-
width to match one or two 200 Gbit NICs and a dozen SSDs.
Unfortunately, these systems are not available to us.

Load balancing policies. We currently rebalance load across
NICs only at instance start or device failure times. Our failover
experiments show that Oasis supports moving traffic within

a few dozen milliseconds (§5.3) and the Oasis allocator has

fine-grained load telemetry available. This opens up the pos-
sibility for advanced load balancing policies that exploit the

bursty nature of network traffic (Figure 3) to further reduce

NIC bandwidth requirements across the pod.

Cloud production networks. Our evaluation setup with
a single Arista 7060X vastly oversimplifies production net-
works. Most importantly, cloud services typically expose
virtual IPs (VIPs), but internally run on many hosts that are
each addressed with a unique direct IP (DIP). The cloud load
balancer [89] stores the VIP-to-DIP mapping and routes traf-
fic to each DIP. For real-world deployment of failover and
pod-wide load balancing, Oasis would have to integrate with
the load balancer. Instead of borrowing a NIC’s MAC address,
Oasis would request a change to the VIP-to-DIP mapping to
reroute traffic of the failed NIC.

7 Related Work

Resource disaggregation. Prior work has extensively stud-
ied datacenter resource disaggregation, especially memory
and storage pooling accessed over RDMA [72, 75, 95, 96, 99,
137, 142, 146, 158]. PCle device pooling can be seen as rack-
level disaggregation focused specifically on PCle devices.
Unlike general RDMA-based disaggregation, Oasis targets
multiplexing NICs and SSDs within a single rack, comple-
menting existing RDMA-based approaches by enabling mul-
tiplexing of PCle resources at finer granularity.

Systems with shared CXL memory. Oasis shares goals
with recent systems using CXL shared memory for host-to-
host communication, such as HydraRPC [119], RPCool [121],
CXL-SHM [156], CtXnL [152], and CXLfork [71]. However,
they either assume cache-coherent CXL memory or have per-
formance and correctness bugs since they make unrealistic
assumptions on non-coherent CXL memory. HydraRPC [119]
proposes an optimization that uses the x86 instructions mwait
and monitor to reduce the power consumption of the polling
thread. However, these instructions actually depend on cache
coherence and do not work on a real CXL 2.0 pool.
Databases leveraging shared memory, such as Tigon [104]
and Pasha [105], may also benefit from Oasis’s optimized
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message channel. Zhong et al. [157] provide motivation for
pooling PCle devices over CXL pools, but do not provide a
concrete design, implementation or evaluation.

Distributed shared memory (DSM) systems. Software-
based cache coherence protocols are extensively studied in
the context of DSM [80, 84, 88, 109, 116, 129, 150, 154]. These
approaches require the software to track all memory accesses
and can cause excessive invalidation operations, resulting in
significant performance overhead.

Hardware alternatives. Two hardware alternatives pro-
vide performance similar to Oasis for pooling NICs and SSDs.
PCle switches [2, 19-21, 23, 34, 103, 122] are effective but
costly and inflexible, as discussed in Section 1. Multi-host
PCle devices like certain NICs [35, 36, 42, 45] are cheaper
but statically partition bandwidth. Additionally, multi-host
devices has significant scaling limits with NICs offering only
2-4 ports [35, 36] and SSDs two ports [47].

Userspace 1/0 stacks. Systems bypassing kernel I/O stacks
achieve high performance and utilization [54, 55, 92, 93, 107,
123, 132, 140, 155], but unlike Oasis, they cannot multiplex
PCle devices across hosts to improve resource utilization
during low-load periods.

TCP migration. Recent TCP migration techniques (e.g.,
Prism [102], Capybara [86]) require programmable network
hardware to achieve low-latency migration across hosts. In
contrast, Oasis seamlessly migrates TCP flows between NICs
across the pod, requiring no special network hardware sup-
port and eliminating packet loss during migration.

8 Conclusions

We presented Oasis, the first software-based system for pool-
ing PCle devices across hosts over commodity CXL mem-
ory pools. Oasis significantly improves resource utilization
by enabling flexible allocation, multiplexing, and failover
of PCle resources such as NICs and SSDs. Our evaluation
demonstrates that Oasis pools NICs with low overhead, sub-
stantially increases NIC utilization, and provides fast failover
capabilities. The cost of Oasis is an added 4-7 ps of overhead
per network packet, a modest overhead compared to typical
cloud network latencies of 50-110 ps. Given the high capital
and operational costs of PCle devices in modern datacen-
ters, we believe the modest overhead incurred by Oasis is
well-justified given the substantial improvements in resource
efficiency it provides.
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