My CXL Pool Obviates Your PCle Switch

Yuhong Zhong Daniel S. Berger Pantea Zardoshti
Columbia University Microsoft Azure Microsoft Azure
University of Washington

Enrique Saurez Jacob Nelson Antonis Psistakis
Microsoft Azure Microsoft Research University of Illinois

Joshua Fried
MIT CSAIL

ABSTRACT

Pooling PCle devices across multiple hosts offers a promising
solution to mitigate stranded I/O resources, enhance device
utilization, address device failures, and reduce total cost of
ownership. The only viable option today are PCle switches,
which decouple PCle devices from hosts by connecting them
through a hardware switch. However, the high cost and
limited flexibility of PCle switches hinder their widespread
adoption beyond specialized datacenter use cases.

This paper argues that PCle device pooling can be effec-
tively implemented in software using CXL memory pools.
CXL memory pools improve memory utilization and already
have positive return on investment. We find that, once CXL
pools are in place, they can serve as a building block for
pooling any kind of PCle device. We demonstrate that PCle
devices can directly use CXL memory as I/O buffers with-
out device modifications, which enables routing PCle traffic
through CXL pool memory. This software-based approach
is deployable on today’s hardware and is more flexible than
hardware PCle switches. In particular, we explore how dis-
aggregating devices such as NICs can transform datacenter
infrastructure.

CCS CONCEPTS

« Software and its engineering — Operating systems; «
Computer systems organization — Cloud computing;
« Hardware — Emerging technologies.

This work is licensed under Creative Commons Attribution International
4.0.

HOTOS 25, May 14-16, 2025, Banff, AB, Canada

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1475-7/25/05.
https://doi.org/10.1145/3713082.3730393

Urbana-Champaign
Asaf Cidon

Columbia University

KEYWORDS

Compute Express Link, CXL, PCle switch, resource pooling,
datacenter, cloud computing

ACM Reference Format:

Yuhong Zhong, Daniel S. Berger, Pantea Zardoshti, Enrique Saurez,
Jacob Nelson, Antonis Psistakis, Joshua Fried, and Asaf Cidon. 2025.
My CXL Pool Obviates Your PCle Switch. In Workshop in Hot Top-
ics in Operating Systems (HOTOS 25), May 14-16, 2025, Banff, AB,
Canada. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3713082.3730393

1 INTRODUCTION

PCle devices — such as NICs, SSDs, and accelerators — ac-
count for a significant portion of server cost and power con-
sumption [2, 30, 78]. Even optimized platforms like AWS and
Azure use servers that physically connect a dozen SSDs over
PCle [12, 59]. All servers use at least one high-bandwidth
NIC. This tight coupling of PCle devices to servers requires
providers to over-provision PCle devices for peak demands
and to offer redundancy for handling device failures. This
leads to low utilization of NICs [67, 71] and local SSDs [66,
71]. Unused I/O resources are stranded within a host and
cannot be used for I/O-intensive workloads running on other
hosts. A common approach to address resource stranding is
to pool resources across multiple hosts [26, 57, 63, 70]. Pool-
ing resources within half a rack can already significantly
improve utilization [25, 57].

PCle pooling enables multiple hosts to use any PCle device
in a shared pool. This would bring multiple benefits:

o Utilization. Pooling PCle devices mitigates stranded I/O
resources and improve device utilization, which reduces
datacenter total cost of ownership (TCO) [57, 71].

e Failover. When a PCle-attached device fails, the host
using it can fail over to other devices in the pool auto-
matically. Pooling also reduces the number of redundant
devices required for fault tolerance in a rack.

58

https://doi.org/10.1145/3713082.3730393
https://doi.org/10.1145/3713082.3730393
https://doi.org/10.1145/3713082.3730393
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3713082.3730393&domain=pdf&date_stamp=2025-06-06

HOTOS 25, May 14-16, 2025

CXL Pod

// Host CXL Memory Pool
A
m/ Logical PCle Pool

Host h
Host
N~ Host

Host

\

NIC SSD

FPGA

Accel

(failed)

"

Figure 1: A CXL memory pool enables hosts to access
any PCle device in a CXL pod, forming a logical pool
of PCle devices.

e Load Balancing. To prevent high load and high latency
from PCle device saturation, pools can dynamically ad-
just the number of hosts using a PCIe device by migrating
workloads to less-utilized devices.

e Peak Performance. During demand spikes, a host can
harvest all the PCle devices in the pool to achieve higher
aggregated performance [84].

¢ Enabling Hardware Innovation. When new accelera-
tors (e.g., smart SSDs and FPGAs) are deployed in public
clouds, they often face low utilization. Pooling addresses
this by allowing cloud providers to deploy a small num-
ber of accelerators (e.g., 1:16 ratio) while ensuring all
hosts in the target racks can access them.

However, practical solutions for pooling PCle devices
have been limited and PCle switches are the only viable
option today. One might think to use RDMA, since cloud
providers already utilize RDMA to disaggregate SSDs [17, 27,
58]. However, in practice, RDMA latency is too high; all cloud
providers still offer host-local SSDs in addition to remote
SSDs. Anecdotally, AWS has tried to remove local SSDs from
their offers, but brought them back due to customer demand?.
Pooling the NICs themselves over RDMA is unfeasible.

PCle switches have been the only generic solution to pool
PCle devices [1, 43]. Hosts and PCle devices connect to a
common PCle switch which allows any host to utilize any
device in the pool [8, 11, 14, 15].

Despite being technically available, deploying PCle switches
is costly and inflexible [43]. The total cost of using PCle
switches in a rack, including the expenses for PCle switches,
switch software, host adapter cards, and cabling, easily reaches
$80,000 [6]. Realistic deployments require redundant switches
for fault tolerance and firmware updates, further increasing
costs. Such high costs can easily outweigh the cost savings of

1E.g., M6i supported local NVMe drives, M7i did not support local NVMe
drives and was introduced in 2023 [28]. AWS later introduced I7ie [29] with
local NVMe drives.

59

Zhong et al.

pooling. Additionally, as a hardware solution, PCle switches
are inflexible. Different vendors have varying requirements
for the topology between hosts and PCle devices, as well as
the types of PCle devices they can support [8, 11, 14]. For
example, Liquid’s SmartStack is specifically designed to pool
GPUs and does not support other device types [14], and Gi-
galO’s FabreX has separate pooling appliances for storage
devices and accelerators [9, 10].

In this paper, we argue that PCle device pooling can be im-
plemented in software on top of Compute eXpress Link (CXL)
memory pools. CXL memory pools have gained industry in-
terest to improve memory utilization and scale up in-memory
databases [13, 20, 25, 33, 36, 40, 54, 55, 57, 64]. Hardware ven-
dors have also started offering CXL memory with pooling
capabilities? [13, 20, 64]. A CXL pod [85] consists of multiple
hosts within a rack, allowing these hosts to dynamically allo-
cate memory from the pool based on demands. Recent work
shows how to build CXL pods with hardware available today
for about $600 per host [32] without using expensive CXL
switches (§3). This enables positive return-on-investment
(ROI) for memory-pooling use cases [31].

Once CXL pods are deployed, they can do much more
than pooling memory — they can serve as a building block
for implementing PCle device pooling in software (Figure 1).
PCle devices and hosts access CXL memory just like any
other memory. So, devices can directly read from or write to
I/O buffers on CXL memory. CPUs from multiple hosts can
transparently access these I/O buffers.

Implementing an efficient data path for PCIe device pool-
ing in software brings multiple challenges. First, CXL in-
creases access latency by 2-3x compared to local DDR5 mem-
ory [73, 76]. We need to carefully assess the performance
impact of placing I/O datapaths in CXL memory. Second,
although the CXL 3.0 specification introduces hardware co-
herence flows across hosts [5], CXL memory pool devices
available today are not cache-coherent across hosts. We must
therefore implement our own software coherence.

We argue that these challenges can be overcome with
hardware available today. A small fraction of memory from
the CXL pool serves as (software-coherent) shared memory
accessible to multiple hosts. We show that a PCle device
attached to one CPU can DMA to/from shared memory and
that an application on another CPU — to which the device is
not connected via PCle — can access IO buffer data in shared
memory. Latency and bandwidth overheads are within 5%.

To enable remote hosts to access PCle device memory (e.g.,
send MMIO commands or ring MMIO doorbells), we imple-
ment a sub-ps-scale host-to-host communication mechanism

2Although advanced pooling features (e.g., Dynamic Capacity Device (DCD),
Back Invalidation (BI)) are only standardized in the recent CXL 2.0 and
3.0 specification [4, 5], the widely adopted CXL 1.1 specification already
provides the necessary functionalities for CXL memory pools (§3)

My CXL Pool Obviates Your PCle Switch

=
=1

I
=]

0
(=

mmaﬂ

CPU Memory SSD Network

Stranded Resource
[% of Capacity]

=}

Figure 2: Percentages of stranded CPU cores, memory
capacity, SSD storage, and NIC bandwidth in Microsoft
Azure datacenters.

based on CXL shared memory. To the best of our knowledge,
this is the first paper to demonstrate shared-memory commu-
nication latency using a real CXL memory pool. Prior work
assumes cross-host cache coherence and emulates CXL pools
using local memory [60, 62, 83]. This building block is used
to forward device memory operations from remote hosts to
the local host where the devices are physically attached.

Our software design of PCle device pooling offers unique
benefits in terms of costs and flexibility: First, CXL mem-
ory pools are inherently cheaper than PCle switches due to
switch-less pod designs [32]. Second, PCle pooling reuses
the exact same hardware used for memory pooling use cases.
We can essentially enable PCle pooling at no extra cost once
CXL memory pools are deployed. Third, this software-based
approach can dynamically support dynamic assignment of
PCle devices to hosts including potential fail-over scenar-
ios. Fourth, the software solution can be easily extended to
support new PCle devices without hardware changes.

In this paper, we first motivate PCle device pooling (§2)
and provide background on CXL memory pools (§3). We then
sketch our design of software-based PCle pooling with CXL
(§4). Lastly, we discuss how PCle device pooling will change
the datacenter infrastructure and other open questions, in-
cluding how the CXL link bandwidth affects different PCle
pooling use cases (§5).

2 WHY IS PCIE POOLING A GOOD IDEA?
2.1 Stranded I/O Resources

Without pooling, PCle devices are only accessible to a sin-
gle host. When a host depletes one type of resource (e.g.,
CPU cores, memory, SSD storage, or NIC bandwidth), the
remaining unutilized I/O resources are effectively stranded,
as additional workloads cannot be scheduled.

An key contributor to stranding is the heterogeneity of
workloads, e.g., of Virtual Machine (VM) types in public
clouds [3, 7, 19], which leads to a multi-dimensional bin-
packing problem [38, 41, 72]. A host accepts new VMs until it
fills up along one dimension (e.g., memory), leaving the other
dimensions stranded (e.g., SSD capacity or NIC bandwidth).

60

HOTOS 25, May 14-16, 2025

For example, Microsoft Azure reports stranding across mul-
tiple resources (Figure 2) [71]. We find that SSD capacity and
NIC bandwidth are the two most stranded resources with
54% and 29% being stranded on average, respectively.

By pooling resources among N servers, the effective bin’s
shape becomes more flexible, so fewer resources become
fully saturated in one dimension while sitting idle in others.
If demands across servers are somewhat independent, a spike
in one server’s demand for a resource (e.g., lots of SSD usage)
may be offset by lower demand in another server. So, in
aggregate, fewer resources remain stranded.

As a rough estimate, queueing theory typically shows
a square-root improvement in resource overprovisioning
when demands are aggregated over N hosts. Specifically, if
demands across servers were independent, then the fraction
of stranded resources would decrease with VN [47, 80]. So,
pooling across even just N = 8 servers would reduce SSD
stranding from 54% to 19% and NIC stranding from 29% to
10% in Microsoft Azure. If scheduling dependencies (e.g.,
availability zones and other constraints [16, 18, 41]) lead to
correlated high demands being colocated in a rack, pooling
could be less effective — however, prior industry data has
not observed such strong correlations [31].

2.2 PCle Device Failures

Many cloud servers use only a single NIC to keep costs low.
If this NIC fails, the entire server becomes unreachable and
needs to wait for repair [59]. Providers can design servers
with redundant PCle devices (e.g., NICs) to ensure avail-
ability during hardware failures. However, PCle devices are
expensive and power-intensive. Additionally, since device
failures are not very common [59], redundancy exacerbates
stranding.

Pooling PCle devices solves this problem by sharing re-
dundant devices across multiple hosts. If a device fails, the
pool can allocate a replacement to the affected host. This
reduces the number of redundant devices needed, lowers
costs, and improves device utilization.

3 CXL MEMORY POOLS

CXL standardizes interconnect protocols between processors
and memory devices. We focus on CXL.mem which enables
cores and devices to transparent load/store (and DMA) to
device memory [5, 73]. CXL establishes a link based on the
PCle physical layer, ports, and cables. It achieves low latency
with custom link and transaction layers. All major server
CPUs (Intel, AMD, ARM) support CXL today.

Latency and bandwidth. The idle load-to-use latency
of CXL memory is about 2-3% the latency of local DDR5
memory. For example, recent measurements show 2.15X idle
latency on a Leo CXL Smart Memory Controller [73]. In

HOTOS 25, May 14-16, 2025

terms of bandwidth, a CXL 2.0/PCle-5.0 X8 link matches the
bandwidth of a DDR5-4800 channel at a typical 2:1 read to
write ratio (30 GB/s). CPUs can interleave at 256 Byte granu-
larity across multiple CXL links to achieve higher bandwidth.
On Intel Xeon 6 (Granite Rapids), we can interleave across
64 CXL lanes per CPU socket [49, 51, 53, 69, 77], providing
~ 240 GB/s.

CXL memory pools. A CXL memory poolis a set of CXL
memory devices that connect to multiple hosts, allowing
them to dynamically allocate memory from the pool. The set
of hosts connected to a CXL pool is called a CXL pod [45].

CXL memory pools can be constructed either by CXL
devices with multiple ports or by CXL switches. Devices
with multiple CXL ports, or multi-headed devices (MHD), can
connect to multiple hosts via dedicated CXL links [13, 20,
32, 33, 36, 40, 57, 61, 64]. These devices are readily available
today from AsteraLabs [52], Marvell [64], and UnifabriX [20].
A single MHD today has up to 20 CXL ports [20] and multiple
MHDs can be combined to scale to larger CXL pod sizes [32].

On the other hand, CXL switches allow CXL devices (in-
cluding devices with a single port) to be connected to a CXL
switch, which in turn connects to multiple hosts. Switched
designs resemble tree network topologies in CXL 2.0 [50]
and Clos network topologies in CXL 3.0 [65]. A single switch
typically offers 128-256 CXL lanes [21]. These lanes would be
shared among connected CPUs, CXL controllers, and other
devices. For example, 128 lanes could connect six CPUs with
x16 CXL ports and two single-ported CXL controllers with
x16 ports. In CXL 3.0, multiple switching levels can be used
to build large-scale CXL pods with 4096 hosts [73].

The tradeoff for switched designs is higher power, cost,
and latency. Prior work observes that CXL switch costs can
exceed the benefits that can be achieved from pooling at
scale [31, 56]. CXL switch latency is also fundamentally
higher than direct CXL connections, as switches require seri-
alization and deserialization of CXL packets twice on every
path from CPU to CXL memory controller [31, 57]. Current
switches add more than 250ns of latency [48], resulting in
idle load-to-use latency of roughly 500 — 600ns.

In short, CXL switches are more costly and have higher
latency overhead, so MHD-based pods will likely be deployed
earlier [31, 32, 56].

Shared CXL memory. A CXL memory pool can be used
as shared memory across all the hosts in a CXL pod. Shared
CXL memory has the potential to speed up RPCs, key-value
stores, and distributed databases [25, 44, 45, 60, 62, 75, 79, 83],

Cache coherence. The CXL 3.0 specification introduces
Back-Invalidate (BI), a hardware flow to implement cache
coherence across multiple hosts [5, 73]. With BL, a CXL 3.0
memory device can implement a snoop filter to track host

61

Zhong et al.

caching and issue snoop requests to change the cache state of
a host. However, implementing BI involves both processor-
side and device-side changes, which greatly increases hard-
ware complexity and costs. Neither CPUs nor CXL memory
pool devices support BI today.

4 DESIGNING PCIE POOLS IN SOFTWARE

We propose the following design goals to make our design

practical and effective in unlocking the benefits of pooling:

(1) Immediately Deployable. CXL memory pool devices
available today do not have hardware cache coherence
across hosts. Thus, pooling should work without coher-
ence.

(2) Device Compatibility. Our design should be compatible
with most PCle devices (e.g., NICs, SSDs, accelerators).

(3) Load Shifting. To realize load balancing and failovers,
our design should support adjusting device-to-host map-
pings and shift loads between devices dynamically.

Our design consists of two components: (i) the datapath,
which decouples PCle devices from hosts by allowing hosts
to access remote PCle devices not directly connected to them
via PCle (§4.1); and (ii) the pooling orchestrator, which
manages the mapping between PCle devices and hosts (§4.2).

Our design assumes containerized environments. The dat-
apath is implemented in the host userspace I/O stacks, and
the pooling orchestrator runs as a special management con-
tainer on one of the hosts in the CXL pod.

Throughout this section, we use NICs as example PCle
devices as they exhibit lower latency and higher bandwidth
compared to SSDs, making them more challenging to pool.
Nevertheless, our design is compatible with other PCle de-
vices, including SSDs and accelerators such as FPGAs.

4.1 PCle Datapath Over CXL

A CXL pool offers a shared memory range for connected
hosts and their PCle devices, which enables us to route PCle
traffic through the CXL pool across host boundaries.

Placing buffers in shared CXL memory. Routing PCle
traffic through a CXL memory pool requires placing I/O-
related buffers in the CXL pool, so that remote PCle devices
can access these buffers via DMA.

For non-cache-coherent CXL pools, the datapath should
explicitly maintain coherence in software. When modifying
I/O buffers, the data should always be written to the CXL
memory rather than staying in the CPU caches. Otherwise,
other hosts might retrieve stale data from the CXL memory.

Performance implications of CXL. Although the la-
tency overhead incurred by CXL could affect the I/O buffers
placed in CXL memory pools, this overhead is negligible
compared to the end-to-end I/O latency of NICs and SSDs.

My CXL Pool Obviates Your PCle Switch

HOTOS 25, May 14-16, 2025

150 4 100

1254

----- P99 (CXL) -+e+ p99 (CXL) <++++ p99 (CXL)
. —— p99 (DDR) p— —— p99 (DDR) — 1004 —— p99 (DDR)
g P90 (CXL) a p90 (CXL) g P90 (CXL)
< 1007 P90 (DDR) > P90 (DDR) S 754 P90 (DDR)
é P50 (CXL) 2 507.. p50 (CXL) § """ p50 (CXL)
£ o] — psomoR) 2 —— p50 (DDR) £ 50— p50 (DDR) | et
- I —— T s -

0 T T T T 0 T T T 0 T T T T T
0 1 2 3 4 0 1 2 3 00 02 04 06 08 1.0

Throughput (MOPS)
(a) 75 B packets.

Throughput (MOPS)
(b) 1500 B packets.

Throughput (MOPS)
(c) 9000 B packets.

Figure 3: Latency-throughput graph of the UDP microbenchmark with 100 Gbps NICs. On the server side, TX and
RX buffers are allocated either from the CXL memory pool (dotted lines) or local DDR5 memory (solid lines).

0 200 400 600 800
One-Way Message Passing Latency (ns)

Figure 4: Latency distribution of message passing.

1000

To quantify if placing I/O buffers in CXL affects I/O latency,
we set up a two-socket server equipped with a 100 Gbps
Mellanox ConnectX-5 NIC and connect both of its CPUs
to a MHD-based CXL pod with each a PCle-5.0 X8 link. A
second host serves as load generator (client) and connects via
another 100 Gbps ConnectX-5 NIC to a common 100 Gbps
switch. We use Junction [37] as the network stack for both
the server and the client. We modify Junction on the server
side to allocate TX and RX buffers (not the TX/RX queues)
from the CXL memory pool. The NIC connects to socket0
and uses one X8 CXL link. Junction runs on socket1 and uses
the other X8 CXL link.

We perform a UDP microbenchmark with varying pay-
load sizes and compare the round-trip network latency of
our modified Junction to an unmodified version that allo-
cates memory locally and runs on socket0. Figure 3 shows
that, although CXL has higher access latency, placing TX/RX
buffers in CXL has negligible effects on the network latency.
Maximum throughput is also not affected because the two
PClIe-5.0 %8 links provide enough bandwidth to saturate
100 Gbps NICs. Scaling to two 400 Gbps NICs may be possi-
ble on a Xeon 6 CXL configuration (Section 3). However, our
proposal may work better for general-purpose computing
than high-bandwidth HPC or ML use cases.

Event signaling and host-to-host communications.
Signaling events such as request arrivals often requires ac-
cessing PCle device memory. As a host cannot directly access
a remote device’s memory via MMIO, the datapath should
provide a communication channel to forward MMIO opera-
tions to the host where the device is physically attached.

62

We prototype a shared-memory communication channel
in shared CXL memory. The channel is implemented as a
ring buffer, with each message slot sized at 64 B to match
the cacheline granularity. It manages cache coherence in
software by using non-temporal stores to send messages.

We measure its latency using a ping-pong test. The sender
and receiver each connect to the CXL memory pool using
a PClIe-5.0 x16 link. Figure 4 shows that shared-memory
channels in CXL achieve sub-ps latencies without cache co-
herence. The median latency is around 600 ns, slightly above
the theoretical minimum latency for message passing, which
equals the total latency of one CXL write and one CXL read.

4.2 Pooling Orchestrator

The pooling orchestrator manages a PCle device pool. It
handles control plane operations, including allocating PCle
devices to hosts, monitoring resource usage and health sta-
tus of each PCle device, and migrating workloads between
devices to balance load or handle device failures.

Each host runs a pooling agent that monitors and con-
figures the PCle device. The orchestrator and the agents
communicate using shared-memory channels in the shared
CXL memory. Both roles are good candidates to offload to
accelerators such as SmartNICs.

When allocating a PCle device to a host, the orchestrator
first checks if the host has a local PCle device that is below
a load threshold. If not, the orchestrator selects the least-
utilized device in the pod to balance load.

If a PCle device fails (e.g., due to NIC link failures) or
becomes overloaded, the corresponding agent will report
the issue to the orchestrator using the shared-memory CXL
channel. The orchestrator can then migrate workloads from
the affected device to other devices.

5 DISCUSSION

The adoption of software-based PCle pooling introduces
numerous potential research opportunities.

HOTOS 25, May 14-16, 2025

Datacenter networks without ToRs. Traditional dat-
acenter designs have had a single top-of-rack (ToR) switch.
All servers in the rack connect to this ToR. Links fan out
from that ToR to multiple aggregation switches. The ToR to
aggregation links are typically oversubscribed [39, 67, 74].

If a ToR fails, the entire rack becomes unreachable. Data-
center operators have thus started to deploy dual ToRs, which
avoids the single point of failure but increases cost [68, 81].

This creates an interesting opportunity: can we eliminate
the ToRs altogether? Instead of oversubscribing at the ToR
level, we can provision sufficient NICs within each CXL pod
to provide equivalent oversubscription, and then directly con-
nect these NICs to multiple switches within the aggregation
layer. This allows us to work around both ToR failures and
NIC failures. This would require high CXL pod reliability.

Highly-available CXL pods. There are multiple ways to
build CXL pods (Section 3). MHD-based pods typically use
multiple MHDs and thus inherently offer high redundancy.
A recent Microsoft white paper formalizes this with so-called
dense topologies that offer A redundant paths within a CXL
pool [32]. Many industry proposals offer A = 4 or even
A = 8 [36, 40, 46, 57].

In the future, CXL 3.0 switches will explicitly support
multi-path CXL topologies with Port Based Routing [73].

While CXL pod hardware may offer redundancy, correctly
implementing redundancy and fail-over is a hard implemen-
tation challenge. However, we believe that software imple-
mentations would likely still be significantly easier than
hardware implementations based on PCle switches.

Soft accelerator disaggregation. The architecture comm-
nuity has proposed and continues to propose an ever increas-
ing set of accelerators. Typically, they come in the form of
PCle cards [35]. Deploying an accelerator that is used by a
large number of people (e.g., compression) is easy. However,
accelerators increasingly target highly specific workloads
such as homomorphic encryption [82]. If a user wants to
use an accelerator, they need to run on a server with this
accelerator. Specialized accelerators may get infrequent use
and thus may sit idle most of the time, which is a significant
cost overhead. Disaggregating accelerators through PCle
switches [9, 10] is complex and expensive. Our approach al-
lows exposing these accelerators as a disaggregated resource
accessed via a CXL-connected pool.

PCle pooling can complement RDMA-based storage
disaggregation. Storage disaggregation over RDMA is com-
mon in clouds. However, in storage clusters, SSDs and NICs
remain tightly coupled to hosts. Each host is provisioned
with SSDs and NICs to handle peak demands. Since stor-
age clusters often exhibit skewed access patterns, NICs are
mostly underutilized. PCIe pooling can address this issue by

63

Zhong et al.

pooling NICs between multiple storage nodes, improving
resource efficiency in RDMA-based disaggregation.

Better host load balancing. PCle pooling can also facil-
itate load balancing for resources other than PCle devices.
Typically, the challenge for moving load to another server is
that TCP connections are assigned at setup and cannot be
moved [34, 42]. A long-lived connection on a server whose
load changes in the background may experience high latency.
Recent work has explored TCP connection migration to move
requests to new servers after they are being processed, but
this work requires programmable switches or other network
middleboxes [34, 42]. Our virtual NIC approach could imple-
ment the transformations required to migrate connections
seamlessly within the CXL pod.

CXL link bandwidth. Recently platforms (e.g., Intel Xeon
6) provide 64 CXL 2.0 / PCle5 lanes per CPU socket [49,
51, 53, 69, 77]. Fully disaggregating a 200 Gbps NIC and a
400 Gbps NIC requires only 8 and 16 CXL lanes, respectively.
Therefore, pooling NICs to improve NIC utilization and re-
duce the NIC-to-host ratio can be supported by allocating
enough CXL lanes per host to interleave between multiple
MHDs. Similarly, disaggregating six NVMe SSDs (current
AWS servers offer six local NVMe SSDs [24], and datacenter
SSDs today often provide 5 GB/s bandwidth [22, 23]) would
require 30 GB/s bandwidth, which can be satisfied with 8
CXL lanes.

However, enabling a single host to saturate a large number
of NICs to maximize its peak network performance does pose
higher requirements for the CXL link [84]. For example, to
drive the combined bandwidth of eight 400 Gbps NICs in a
CXL pod, the host would need at least 100 CXL 2.0 lanes,
making this use case less realistic.

Operational implications. Datacenters often need to
update host OSes and platform firmware, which requires re-
booting individual hosts. To enable such maintenance, PCle
device pooling should support hot-adding and hot-removing
hosts from a CXL pod, allowing updates to be rolled out
incrementally on a per-host basis. For instance, when recon-
figuring a host in public clouds, the VM scheduler should live
migrate all VMs off the host and notify the pooling orchestra-
tor to hot-remove it. Upon removal, the orchestrator should
prevent new device allocations to the host and migrate its
existing PCle device assignments to other active hosts.

6 ACKNOWLEDGMENTS

We thank the reviewers for their helpful comments. We also
thank Rodrigo Fonseca and Stefan Saroiu for their feedback.
This work was supported by NSF award CNS-2143868.

My CXL Pool Obviates Your PCle Switch

REFERENCES

[1] A New Twist on Pci-Express Switching for the Datacenter.

[24

(25

—

=

=D

—

—

=

[

https://gigaio.com/2019/10/a-new-twist-on-pci-express- switching-
for-the-datacenter/.

Al Server Cost Analysis. https://semianalysis.com/2023/05/29/ai-
server-cost-analysis-memory-is/.

Amazon EC2 Instance types. https://aws.amazon.com/ec2/instance-
types/.

Compute Express Link (CXL) 2.0 Specification. https:
//computeexpresslink.org/wp-content/uploads/2024/02/CXL-
2.0-Specification.pdf.

Compute Express Link (CXL) 3.0 Specification. https:

//computeexpresslink.org/wp-content/uploads/2024/02/CXL-
3.0-Specification.pdf.

Counting the Cost of Under-Utilized GPUs And Doing Something
About It. https://gigaio.com/2020/11/counting-the-cost-of-under-
utilized- gpus-and-doing-something-about-it/.

General-purpose machine family for Compute Engine. https://cloud.
google.com/compute/docs/general-purpose-machines.

GigalO: FabreX AI Memory Fabric Platform. https://gigaio.com/
products/fabrex-system-overview/.

GigalO - Accelerator Pooling Appliance. https://gigaio.com/products/
accelerator-pooling-appliance/.

GigalO — Storage Pooling Appliance. https://gigaio.com/products/
storage-pooling-appliance/.

H3 Composable Al Solutions. https://www.h3platform.com/solution/
composable-ai.

Instance store temporary block storage for ec2 instances. https://docs.
aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage html.
Accessed: 2025-01-13.

Leo CXL® Smart Memory Controllers. https://www.asteralabs.com/
products/leo-cxl-smart-memory-controllers/.

Liqid SmartStack. https://www.ligid.com/products/gpu-on-demand.
Microchip Switchtec PCle Switches. https://www.microchip.com/en-
us/products/interface-and- connectivity/pcie-switches.

Move Azure virtual machines into Availability Zones.
https://learn.microsoft.com/en-us/azure/site-recovery/move-
azure-vms-avset-azone.

NVMe over Fabrics (oF) Specification.
specification/nvme- of-specification/.
Regions and Zones. https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/using-regions-availability-zones.html.

Sizes for virtual machines in Azure. https://learn.microsoft.com/en-
us/azure/virtual-machines/sizes/overview.

UnifabriX launches memory pooling system. https://www.unifabrix.
com/resources/unifabrix-launches-memory-pooling-system.

XConn CXL2.0/PCle5.0 switch. https://www.xconn-tech.com/product.
990 EVO 2 TB SSD NVMe M.2 product specifications, 2025. Avail-
able at https://www.samsung.com/us/computing/memory-storage/
solid-state-drives/990-evo-nvme-ssd- 2tb-mz-v9e2tOb-am/, accessed
4/16/25.

Solidigm D5-P5430 product specifications, 2025. Available
at https://www.solidigm.com/products/data- center/d5/p5430.html#
configurator, accessed 4/16/25.

Specifications for Amazon EC2 general purpose instances, 2025.
Available at https://docs.aws.amazon.com/ec2/latest/instancetypes/
gp.html#gp_network, accessed 4/16/25.

Minseon Ahn, Thomas Willhalm, Norman May, Donghun Lee,
Suprasad Mutalik Desai, Daniel Booss, Jungmin Kim, Navneet Singh,
Daniel Ritter, and Oliver Rebholz. An examination of cxl memory use
cases for in-memory database management systems using sap hana.

https://nvmexpress.org/

64

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

HOTOS 25, May 14-16, 2025

Proceedings of the VLDB Endowment, 17(12):3827-3840, 2024.

Pradeep Ambati, Inigo Goiri, Felipe Frujeri, Alper Gun, Ke Wang, Brian
Dolan, Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh
Elnikety, Marcus Fontoura, and Ricardo Bianchini. Providing SLOs
for Resource-Harvesting VMs in cloud platforms. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), pages 735-751. USENIX Association, November 2020.

Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre,
Paramvir Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman, Lei
Cao, Ahmad Cheema, Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad,
Vivek Ette, Igal Figlin, Daniel Firestone, Mathew George, Ilya German,
Lakhmeet Ghai, Eric Green, Albert Greenberg, Manish Gupta, Randy
Haagens, Matthew Hendel, Ridwan Howlader, Neetha John, Julia John-
stone, Tom Jolly, Greg Kramer, David Kruse, Ankit Kumar, Erica Lan,
Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu, Chen Liu, Guohan
Lu, Yuemin Lu, Xiakun Lu, Vadim Makhervaks, Ulad Malashanka,
David A. Maltz, Ilias Marinos, Rohan Mehta, Sharda Murthi, Anup
Namdhari, Aaron Ogus, Jitendra Padhye, Madhav Pandya, Douglas
Phillips, Adrian Power, Suraj Puri, Shachar Raindel, Jordan Rhee, An-
thony Russo, Maneesh Sah, Ali Sheriff, Chris Sparacino, Ashutosh
Srivastava, Weixiang Sun, Nick Swanson, Fuhou Tian, Lukasz Tom-
czyk, Vamsi Vadlamuri, Alec Wolman, Ying Xie, Joyce Yom, Lihua
Yuan, Yanzhao Zhang, and Brian Zill. Empowering azure storage with
RDMA. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 49-67, Boston, MA, April 2023.
USENIX Association.

Jeff Barr. New seventh-generation general purpose amazon ec2
instances (m7i-flex and m7i). https://aws.amazon.com/blogs/aws/new-
seventh-generation-general-purpose-amazon-ec2-instances-m7i-
flex-and-m7i/, 2023. Accessed: 2025-01-13.

Jeff Barr. Now available: Storage optimized amazon ec2 i7ie in-
stances. https://aws.amazon.com/blogs/aws/now-available-storage-
optimized-amazon-ec2-i7ie-instances/, 2024. Accessed: 2025-01-13.
Luiz André Barroso and Urs Hoélzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. 2009.

Daniel S Berger, Daniel Ernst, Huaicheng Li, Pantea Zardoshti, Monish
Shah, Samir Rajadnya, Scott Lee, Lisa Hsu, Ishwar Agarwal, Mark D
Hill, et al. Design tradeoffs in cxl-based memory pools for public cloud
platforms. IEEE Micro, 43(2):30-38, 2023.

Daniel S. Berger, Yuhong Zhong, Pantea Zardoshti, Shuwei Teng, Fio-
dar Kazhamiaka, and Rodrigo Fonseca. Octopus: Scalable low-cost cxl
memory pooling, 2025.

Prakash Chauhan, Chris Petersen, Brian Morris, and Jerome Glisse.
Hyperscale tiered memory expander specification for compute
express link. Available at https://www.opencompute.org/documents/
hyperscale-tiered-memory-expander-specification-for-compute-
express-link-cxl-1-pdf, 2023. Open Compute Project, Revision 1,
Effective October 27, 2023.

Inho Choi, Nimish Wadekar, Raj Joshi, Joshua Fried, Dan RK Ports,
Irene Zhang, and Jialin Li. Capybara: usecond-scale live tcp migra-
tion. In Proceedings of the 14th ACM SIGOPS Asia-Pacific Workshop on
Systems, pages 30-36, 2023.

Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian,
Karthik Gururaj, and Glenn Reinman. Accelerator-rich architectures:
Opportunities and progresses. In Proceedings of the 51st annual design
automation conference, pages 1-6, 2014.

Mohamad El-Batal. Seagate Composable Memory Appliance (CMA)
Architecture. https://www.youtube.com/watch?v=KCgE0WejXI0, June
2024.

Joshua Fried, Gohar Irfan Chaudhry, Enrique Saurez, Esha Choukse,
Inigo Goiri, Sameh Elnikety, Rodrigo Fonseca, and Adam Belay. Making
kernel bypass practical for the cloud with junction. In 21st USENIX

https://gigaio.com/2019/10/a-new-twist-on-pci-express-switching-for-the-datacenter/
https://gigaio.com/2019/10/a-new-twist-on-pci-express-switching-for-the-datacenter/
https://semianalysis.com/2023/05/29/ai-server-cost-analysis-memory-is/
https://semianalysis.com/2023/05/29/ai-server-cost-analysis-memory-is/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-2.0-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-2.0-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-2.0-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.0-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.0-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.0-Specification.pdf
https://gigaio.com/2020/11/counting-the-cost-of-under-utilized-gpus-and-doing-something-about-it/
https://gigaio.com/2020/11/counting-the-cost-of-under-utilized-gpus-and-doing-something-about-it/
https://cloud.google.com/compute/docs/general-purpose-machines
https://cloud.google.com/compute/docs/general-purpose-machines
https://gigaio.com/products/fabrex-system-overview/
https://gigaio.com/products/fabrex-system-overview/
https://gigaio.com/products/accelerator-pooling-appliance/
https://gigaio.com/products/accelerator-pooling-appliance/
https://gigaio.com/products/storage-pooling-appliance/
https://gigaio.com/products/storage-pooling-appliance/
https://www.h3platform.com/solution/composable-ai
https://www.h3platform.com/solution/composable-ai
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html
https://www.asteralabs.com/products/leo-cxl-smart-memory-controllers/
https://www.asteralabs.com/products/leo-cxl-smart-memory-controllers/
https://www.liqid.com/products/gpu-on-demand
https://www.microchip.com/en-us/products/interface-and-connectivity/pcie-switches
https://www.microchip.com/en-us/products/interface-and-connectivity/pcie-switches
https://learn.microsoft.com/en-us/azure/site-recovery/move-azure-vms-avset-azone
https://learn.microsoft.com/en-us/azure/site-recovery/move-azure-vms-avset-azone
https://nvmexpress.org/specification/nvme-of-specification/
https://nvmexpress.org/specification/nvme-of-specification/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/overview
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/overview
https://www.unifabrix.com/resources/unifabrix-launches-memory-pooling-system
https://www.unifabrix.com/resources/unifabrix-launches-memory-pooling-system
https://www.xconn-tech.com/product
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/990-evo-nvme-ssd-2tb-mz-v9e2t0b-am/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/990-evo-nvme-ssd-2tb-mz-v9e2t0b-am/
https://www.solidigm.com/products/data-center/d5/p5430.html#configurator
https://www.solidigm.com/products/data-center/d5/p5430.html#configurator
https://docs.aws.amazon.com/ec2/latest/instancetypes/gp.html#gp_network
https://docs.aws.amazon.com/ec2/latest/instancetypes/gp.html#gp_network
https://aws.amazon.com/blogs/aws/new-seventh-generation-general-purpose-amazon-ec2-instances-m7i-flex-and-m7i/
https://aws.amazon.com/blogs/aws/new-seventh-generation-general-purpose-amazon-ec2-instances-m7i-flex-and-m7i/
https://aws.amazon.com/blogs/aws/new-seventh-generation-general-purpose-amazon-ec2-instances-m7i-flex-and-m7i/
https://aws.amazon.com/blogs/aws/now-available-storage-optimized-amazon-ec2-i7ie-instances/
https://aws.amazon.com/blogs/aws/now-available-storage-optimized-amazon-ec2-i7ie-instances/
https://www.opencompute.org/documents/hyperscale-tiered-memory-expander-specification-for-compute-express-link-cxl-1-pdf
https://www.opencompute.org/documents/hyperscale-tiered-memory-expander-specification-for-compute-express-link-cxl-1-pdf
https://www.opencompute.org/documents/hyperscale-tiered-memory-expander-specification-for-compute-express-link-cxl-1-pdf
https://www.youtube.com/watch?v=KCgE0WejXl0

HOTOS 25, May 14-16, 2025

(38

—

(39

-

[40

[t

(41

—

[42

—

(43

[t

(44

[l

(45]

[46

=

(47]

(48]

(49]

(50]

(51

—

(52

—

(53]

Symposium on Networked Systems Design and Implementation (NSDI
24), pages 55-73, Santa Clara, CA, April 2024. USENIX Association.
Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram
Rao, and Aditya Akella. Multi-resource packing for cluster schedulers.
SIGCOMM Comput. Commun. Rev., 44(4):455-466, August 2014.
Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kan-
dula, Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel,
and Sudipta Sengupta. VI2: A scalable and flexible data center net-
work. In Proceedings of the ACM SIGCOMM 2009 conference on Data
communication, pages 51-62, 2009.

Minho Ha, Junhee Ryu, Jungmin Choi, Kwangjin Ko, Sunwoong Kim,
Sungwoo Hyun, Donguk Moon, Byungil Koh, Hokyoon Lee, My-
oungseo Kim, et al. Dynamic capacity service for improving cxl pooled
memory efficiency. IEEE Micro, 43(2):39-47, 2023.

Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E
Greeff, David Dion, Star Dorminey, Shailesh Joshi, Yang Chen, Mark
Russinovich, and Thomas Moscibroda. Protean: VM allocation service
at scale. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 845-861. USENIX Association,
November 2020.

Yutaro Hayakawa, Michio Honda, Douglas Santry, and Lars Eggert.
Prism: Proxies without the pain. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 21), pages 535-549,
2021.

Wentao Hou, Jie Zhang, Zeke Wang, and Ming Liu. Understanding
routable PCle performance for composable infrastructures. In 21st
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 24), pages 297-312, Santa Clara, CA, April 2024. USENIX
Association.

Yibo Huang, Haowei Chen, Newton Ni, Vijay Chidambaram, Dixin
Tang, and Emmett Witchel. Tigon: A distributed database for a CXL
pod. In 19th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 25), Boston, MA, July 2025. USENIX Association.
Yibo Huang, Newton Ni, Vijay Chidambaram, Emmett Witchel, and
Dixin Tang. Pasha: An efficient, scalable database architecture for
cxl pods. In Proceedings of the Conference on Innovative Data Systems
Research (CIDR), 2024.

Ronen Hyatt. The quest for bandwidth and capacity: Mem-
ory edition, 2023. https://www.hpcuserforum.com/wp-
content/uploads/2023/09/Ronen-Hyatt_UnifabriX_The-Quest-for-
Bandwidth-and-Capacity-Memory-Edition_Sept-2023-HPC-UF.pdf.
A. J. E. M. Janssen and Johan S. H. van Leeuwaarden. Refining
square-root safety staffing by expanding erlang c. Operations Re-
search, 59(6):1512-1522, 2011. Provides refinements to the square-root
safety staffing rule using corrected diffusion approximations for the
Erlang C formula.

JP Jiang. CXL Switch for Scalable & Composable Memory Pool-
ing/Sharing. FMS presentation available at https://www.xconn-tech.
com/products, 2024.

Michael Kalodrich. New supermicro x14 systems, 2024. Accessed:
2024-12-18.

Jim Kao. CXL 2.0 Switch for a Composable Memory System.
https://computeexpresslink.org/wp-content/uploads/2024/09/
Xconn_CXL-2.0-Switch-for-a-Composable-Memory-System_FMS-
2024_FINAL.pdf, October 2024.

Patrick Kennedy. Lenovo has a cxl memory monster with 128x 128gb
ddr5 dimms, 2024. Accessed: 2024-12-18.

Astera Labs. Leo cxl smart memory controllers. Avail-
able at https://www.asteralabs.com/products/leo-cxl-smart-memory-
controllers/, December 2023. Product Brief.

Lenovo. Lenovo thinksystem sr860 v3 server, 2024. Accessed: 2024-12-
18.

65

[54]
[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Zhong et al.

Alberto Lerner and Gustavo Alonso. Cxl and the return of scale-up
database engines. Proc. VLDB Endow., 17(10):2568-2575, August 2024.
Alberto Lerner and Gustavo Alonso. Cxl and the return of scale-up
database engines. arXiv preprint arXiv:2401.01150, 2024.

Philip Levis, Kun Lin, and Amy Tai. A case against cxl memory pooling.
In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks,
HotNets 23, page 18-24, New York, NY, USA, 2023. Association for
Computing Machinery.

Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-
doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bian-
chini. Pond: Cxl-based memory pooling systems for cloud platforms.
In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2,
ASPLOS 2023, page 574-587, New York, NY, USA, 2023. Association
for Computing Machinery.

Qiang Li, Qiao Xiang, Yuxin Wang, Haohao Song, Ridi Wen, Wenhui
Yao, Yuanyuan Dong, Shuqi Zhao, Shuo Huang, Zhaosheng Zhu, et al.
More than capacity: Performance-oriented evolution of pangu in al-
ibaba. In 21st USENIX Conference on File and Storage Technologies (FAST
23), pages 331-346, 2023.

Jialun Lyu, Marisa You, Celine Irvene, Mark Jung, Tyler Narmore, Ja-
cob Shapiro, Luke Marshall, Savyasachi Samal, Ioannis Manousakis,
Lisa Hsu, et al. Hyrax:{Fail-in-Place} server operation in cloud plat-
forms. In 17th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 23), pages 287-304, 2023.

Teng Ma, Zheng Liu, Chengkun Wei, Jialiang Huang, Youwei Zhuo,
Haoyu Li, Ning Zhang, Yijin Guan, Dimin Niu, Mingxing Zhang, and
Tao Ma. HydraRPC: RPC in the CXL era. In 2024 USENIX Annual
Technical Conference (USENLX ATC 24), pages 387-395, Santa Clara,
CA, July 2024. USENIX Association.

Grant Mackey. You don’t know ’jack’: Cxl fabric orchestration
and management. Available at https://files.futurememorystorage.
com/proceedings/2024/20240806_CXLT-102-1_Mackey.pdf, 2024. Pre-
sented by Jackrabbit Labs.

Suyash Mahar, Ehsan Hajyjasini, Seungjin Lee, Zifeng Zhang, Mingyao
Shen, and Steven Swanson. Telepathic datacenters: Fast rpcs using
shared cx] memory, 2024.

Hasan Al Maruf, Yuhong Zhong, Hongyi Wang, Mosharaf Chowdhury,
Asaf Cidon, and Carl Waldspurger. Memtrade: Marketplace for disag-
gregated memory clouds. Proc. ACM Meas. Anal. Comput. Syst., 7(2),
May 2023.

Inc. Marvell Technology. Structera a 2504 memory-expansion
controller. Available at https://www.marvell.com/content/dam/
marvell/en/public-collateral/assets/marvell-structera-a-2504-near-
memory-accelerator-product-brief.pdf, 2024. Product Brief, P/N
MV-SLA25041-A0-HF350AA-C000.

Danny Moore and Debendra Das Sharma. CXL 3.0: Enabling
composable systems with expanded fabric capabilities. https:
//computeexpresslink.org/wp-content/uploads/2023/12/CXL_3.0-
Webinar_FINAL.pdf, October 2022.

Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash Sharma, Laura
Caulfield, Anand Sivasubramaniam, Ben Cutler, Jie Liu, Badriddine
Khessib, and Kushagra Vaid. Ssd failures in datacenters: What? when?
and why? In Proceedings of the 9th ACM International on Systems and
Storage Conference, pages 1-11, 2016.

Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Mukarram
Tariq, Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick Conner,
Steve Gribble, et al. Jupiter evolving: transforming google’s datacenter
network via optical circuit switches and software-defined networking.
In Proceedings of the ACM SIGCOMM 2022 Conference, pages 66—85,
2022.

https://www.hpcuserforum.com/wp-content/uploads/2023/09/Ronen-Hyatt_UnifabriX_The-Quest-for-Bandwidth-and-Capacity-Memory-Edition_Sept-2023-HPC-UF.pdf
https://www.hpcuserforum.com/wp-content/uploads/2023/09/Ronen-Hyatt_UnifabriX_The-Quest-for-Bandwidth-and-Capacity-Memory-Edition_Sept-2023-HPC-UF.pdf
https://www.hpcuserforum.com/wp-content/uploads/2023/09/Ronen-Hyatt_UnifabriX_The-Quest-for-Bandwidth-and-Capacity-Memory-Edition_Sept-2023-HPC-UF.pdf
https://www.xconn-tech.com/products
https://www.xconn-tech.com/products
https://computeexpresslink.org/wp-content/uploads/2024/09/Xconn_CXL-2.0-Switch-for-a-Composable-Memory-System_FMS-2024_FINAL.pdf
https://computeexpresslink.org/wp-content/uploads/2024/09/Xconn_CXL-2.0-Switch-for-a-Composable-Memory-System_FMS-2024_FINAL.pdf
https://computeexpresslink.org/wp-content/uploads/2024/09/Xconn_CXL-2.0-Switch-for-a-Composable-Memory-System_FMS-2024_FINAL.pdf
https://www.asteralabs.com/products/leo-cxl-smart-memory-controllers/
https://www.asteralabs.com/products/leo-cxl-smart-memory-controllers/
https://files.futurememorystorage.com/proceedings/2024/20240806_CXLT-102-1_Mackey.pdf
https://files.futurememorystorage.com/proceedings/2024/20240806_CXLT-102-1_Mackey.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/assets/marvell-structera-a-2504-near-memory-accelerator-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/assets/marvell-structera-a-2504-near-memory-accelerator-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/assets/marvell-structera-a-2504-near-memory-accelerator-product-brief.pdf
https://computeexpresslink.org/wp-content/uploads/2023/12/CXL_3.0-Webinar_FINAL.pdf
https://computeexpresslink.org/wp-content/uploads/2023/12/CXL_3.0-Webinar_FINAL.pdf
https://computeexpresslink.org/wp-content/uploads/2023/12/CXL_3.0-Webinar_FINAL.pdf

My CXL Pool Obviates Your PCle Switch

(68]

(69

—

[70

[t

[71

—

(72

—

(73

=

[74

=

(75

—

(76

=

(7]

(78]

[79]

(80]

Kun Qian, Yongqing Xi, Jiamin Cao, Jiagi Gao, Yichi Xu, Yu Guan,
Binzhang Fu, Xuemei Shi, Fangbo Zhu, Rui Miao, et al. Alibaba hpn: A
data center network for large language model training. In Proceedings
of the ACM SIGCOMM 2024 Conference, pages 691-706, 2024.
ASRock Rack. Gnrd8-2I2t preliminary ceb specifications, 2024. Ac-
cessed: 2024-12-18.

Benjamin Reidys, Jinghan Sun, Anirudh Badam, Shadi Noghabi, and
Jian Huang. BlockFlex: Enabling storage harvesting with Software-
Defined flash in modern cloud platforms. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), pages
17-33, Carlsbad, CA, July 2022. USENIX Association.

Benjamin Reidys, Pantea Zardoshti, fﬁigo Goiri, Celine Irvene, Daniel S.
Berger, Haoran Ma, Kapil Arya, Eli Cortez, Taylor Stark, Eugene Bak,
Mehmet Iyigun, Stanko Novakovi¢, Lisa Hsu, Karel Trueba, Abhisek
Pan, Saravan Bansal, Chetan Rajmohan, Jian Huang, and Ricardo Bian-
chini. Coach: Exploiting temporal patterns for all-resource oversub-
scription in cloud platforms. In Proceedings of the 30th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS °25, New York, NY, USA, 2025. Association
for Computing Machinery.

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. LegoOS:
A disseminated, distributed OS for hardware resource disaggregation.
In 13th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), pages 69-87, Carlsbad, CA, October 2018. USENIX
Association.

Debendra Das Sharma, Robert Blankenship, and Daniel S. Berger. An
introduction to the Compute Express Link (CXL) interconnect. ACM
Computing Surveys (CSUR), 2024.

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-
tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie
Germano, et al. Jupiter rising: A decade of clos topologies and central-
ized control in google’s datacenter network. ACM SIGCOMM computer
communication review, 45(4):183-197, 2015.

Joshua Suetterlein, Joseph Manzano, and Andres Marquez. Synchro-
nization for CXL based memory. In Proceedings of the International
Symposium on Memory Systems, MEMSYS ’24, page 178-185, New
York, NY, USA, 2024. Association for Computing Machinery.

Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan
Huang, Houxiang Ji, Siddharth Agarwal, Jiagi Lou, Ipoom Jeong, Ren
Wang, Jung Ho Ahn, Tianyin Xu, and Nam Sung Kim. Demystifying cxl
memory with genuine cxl-ready systems and devices. In Proceedings of
the 56th Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO ’23, page 105-121, New York, NY, USA, 2023. Association
for Computing Machinery.

KAYTUS Systems. Kr2280v3 platform intel amd, 2024. Accessed:
2024-12-18.

Jaylen Wang, Daniel S. Berger, Fiodar Kazhamiaka, Celine Irvene, Chao-
jie Zhang, Esha Choukse, Kali Frost, Rodrigo Fonseca, Brijesh Warrier,
Chetan Bansal, Jonathan Stern, Ricardo Bianchini, and Akshitha Sri-
raman. Designing cloud servers for lower carbon. In 2024 ACM/IEEE
51st Annual International Symposium on Computer Architecture (ISCA),
pages 452-470, 2024.

Zhao Wang, Yiqi Chen, Cong Li, Yijin Guan, Dimin Niu, Tianchan
Guan, Zhaoyang Du, Xingda Wei, and Guangyu Sun. CTXNL: A
software-hardware co-designed solution for efficient cxl-based transac-
tion processing. In Proceedings of the 30th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, ASPLOS ’25, page 192-209, New York, NY, USA,
2025. Association for Computing Machinery.

Ward Whitt. Understanding the efficiency of multi-server service
systems. Management Science, 38(5):708-723, 1992. Analyzes the
efficiency of multi-server systems and discusses the implications of

66

[81]

[82]

[83]

[84]

[85]

HOTOS 25, May 14-16, 2025

the square-root staffing rule.

Ying Xie and Guohan Dualtor evolution:
Active-active dualtor. https://drive.google.com/file/d/
1RtYYk1JHv7WnyABrUVj7FiRMZu2KEYtL/view, October 2023.
Accessed: 2025-01-13.

Junxue Zhang, Xiaodian Cheng, Liu Yang, Jinbin Hu, Ximeng Liu, and
Kai Chen. Sok: Fully homomorphic encryption accelerators. ACM
Computing Surveys, 56(12):1-32, 2024.

Mingxing Zhang, Teng Ma, Jinqi Hua, Zheng Liu, Kang Chen, Ning
Ding, Fan Du, Jinlei Jiang, Tao Ma, and Yongwei Wu. Partial fail-
ure resilient memory management system for (cxl-based) distributed
shared memory. In Proceedings of the 29th Symposium on Operating
Systems Principles, SOSP 23, page 658-674, New York, NY, USA, 2023.
Association for Computing Machinery.

Xu Zhang, Ke Liu, Yisong Chang, Ke Zhang, and Mingyu Chen. Dfab-
ric: Scaling out data parallel applications with cxl-ethernet hybrid
interconnects, 2024.

Zhiting Zhu, Newton Ni, Yibo Huang, Yan Sun, Zhipeng Jia, Nam Sung
Kim, and Emmett Witchel. Challenges and opportunities for sys-
tems using cxl memory. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 2-2, 2024.

Lu.

https://drive.google.com/file/d/1RtYYk1JHv7WnyABrUVj7FiRMZu2KEYtL/view
https://drive.google.com/file/d/1RtYYk1JHv7WnyABrUVj7FiRMZu2KEYtL/view

	Abstract
	1 Introduction
	2 Why is PCIe Pooling a Good Idea?
	2.1 Stranded I/O Resources
	2.2 PCIe Device Failures

	3 CXL Memory Pools
	4 Designing PCIe Pools in Software
	4.1 PCIe Datapath Over CXL
	4.2 Pooling Orchestrator

	5 Discussion
	6 Acknowledgments
	References

