
Making Kernel Bypass Practical for the Cloud with Junction
Joshua Fried, Gohar Irfan Chaudhry, Enrique Saurez†, Esha Choukse†, Íñigo Goiri†,

Sameh Elnikety‡, Rodrigo Fonseca†, Adam Belay
MIT CSAIL †Azure Research – Systems ‡Microsoft Research

Abstract. Kernel bypass systems have demonstrated order of
magnitude improvements in throughput and tail latency for
network-intensive applications relative to traditional operating
systems (OSes). To achieve such excellent performance, how-
ever, they rely on dedicated resources (e.g., spinning cores,
pinned memory) and require application rewriting. This is
unattractive to cloud operators because they aim to densely
pack applications, and rewriting cloud software requires a
massive investment of valuable developer time. For both rea-
sons, kernel bypass, as it exists, is impractical for the cloud.

In this paper, we show these compromises are not neces-
sary to unlock the full benefits of kernel bypass. We present
Junction, the first kernel bypass system that can pack thou-
sands of instances on a machine while providing compatibility
with unmodified Linux applications. Junction achieves high
density through several advanced NIC features that reduce
pinned memory and the overhead of monitoring large numbers
of queues. It maintains compatibility with minimal overhead
through optimizations that exploit a shared address space with
the application. Junction scales to 19–62× more instances
than existing kernel bypass systems and can achieve similar or
better performance without code changes. Furthermore, Junc-
tion delivers significant performance benefits to applications
previously unsupported by kernel bypass, including those that
depend on runtime systems like Go, Java, Node, and Python.
In a comparison to native Linux, Junction increases through-
put by 1.6–7.0× while using 1.2–3.8× less cores across seven
applications.

1 Introduction
Network-intensive applications have experienced remark-

able performance improvements (i.e., order of magnitude
better tail latency and throughput) from kernel bypass sys-
tems [6, 15, 28, 29, 37, 43, 44, 67]. Their key idea is to map
network queues into userspace, so applications can communi-
cate directly with the NIC and avoid kernel overheads.

Junction is a new kernel bypass system that targets cloud
applications (e.g., microservices, serverless, etc.). Like pre-
vious kernel bypass systems, Junction delivers significant
performance improvements, including higher throughput and
greater CPU efficiency, as well as order of magnitude reduc-
tions in tail latency relative to traditional OSes. At the same
time, Junction is the first kernel bypass system that retains
compatibility with unmodified Linux binaries and is capable
of achieving high density (i.e., the ability to scale to thousands
of instances on a machine). Junction delivers these benefits

while maintaining strict isolation between applications with a
narrower attack surface than existing cloud isolation schemes.

Prior kernel bypass systems make compromises that ren-
der them impractical for use in the cloud. For example, they
require dedicated, busy-spinning cores and pinned memory,
so very few instances can be packed on a machine. More-
over, they make significant changes to the programming
model [6, 14, 21, 33, 52] that break compatibility and sacrifice
the enormous investment made in existing software. Finally,
most kernel bypass systems provide no isolation of their own,
so they must be combined with virtualization—and its as-
sociated overheads (e.g., VM exit costs, nested page tables,
etc.)—to be deployed safely in a cloud setting.

Junction is able to retain the full performance benefits of
kernel bypass without these compromises through a set of
design contributions that target isolation, density, and compat-
ibility. To achieve strong isolation while avoiding virtualiza-
tion overheads, Junction runs each instance inside a normal
Linux process and installs a filter that limits access to sys-
tem calls. Within an instance, Junction runs as a library that
shares an address space with the application. Because Junc-
tion is able to build all of its OS abstractions on top of kernel
bypass hardware (e.g., NIC queues, CPU features, etc.) it re-
quires only minimal interactions with the kernel, just enough
to enable resource multiplexing (≈ a dozen system calls).

To achieve high density, Junction efficiently multiplexes
both cores and memory. For cores, Junction builds upon prior
work on a dedicated scheduler core, but overcomes the pre-
viously unaddressed challenge of scaling to a large number
of instances. To do so, Junction makes novel use of a NIC
hardware feature that delivers packet arrival notifications on
a dedicated queue instead of requiring each receive queue
to be polled individually. For memory, Junction employs a
variety of new techniques to reduce the footprint of packet
buffers, including configuring NIC hardware to share a queue
of receive buffers across multiple cores, as well as allowing
multiple packets to be posted in each receive buffer. Junction
also securely exposes the Linux page cache to share read-only
memory across instances.

To achieve Linux compatibility, Junction provides its own
implementation of the Linux Kernel system call interface.
This was challenging to do in a way that maintains the per-
formance benefits of kernel bypass. Junction exploits the
fact that it runs in the same address space as the application
to unlock optimizations that minimize the cost of compat-
ibility. For example, Junction safely converts system calls
into function calls, avoids transient execution mitigations,

Density Compatibility

System Mem. overhead
(single core)

Mem. overhead
per instance per core

Max instances
(128GB RAM)

Ported
Application

Lines of code Compatible w/
existing clients

Added Removed Modified

eRPC [30] 24 MB 24 MB # of cores Masstree 551 0 0 ✗
Demikernel [67] 167 MB – # of cores Redis 926 819 213 ✓
Caladan [15] 648 MB 9 MB 200 Memcached 393 539 637 ✓

Junction 29 MB 0.47 MB 3,500 No porting – – – ✓

Table 1: Existing kernel bypass systems require large amounts of dedicated host resources and invasive changes to applications.

accesses arguments directly without copying them, exploits
undefined behavior to eliminate locking, and uses vector in-
structions without the need to save and restore register state.
Junction also provides many OS features that are missing
in existing kernel bypass systems (e.g., signals, thread-local
storage, randomness, file systems, timers, etc.) but are crucial
to supporting cloud applications. It maintains a kernel bypass
approach to delivering these features by exploiting modern
CPU extensions to avoid traps into the kernel.
Results. Junction helps to pave a path toward practical deploy-
ment of kernel bypass in the cloud by showing it is possible to
deliver high performance without sacrificing security, density,
or compatibility. For example, Junction can run unmodified
Linux binaries while matching or exceeding the performance
of three state-of-the-art kernel bypass systems that require
significant code changes. Moreover, Junction’s reliance on
kernel bypass hardware allows it to reduce the number of
system calls in its attack surface by 69%–87% relative to
two security-focused library OSes, and Junction’s buffer man-
agement and queue polling optimizations allow it to pack
thousands of instances on a machine. Finally, Junction is the
first system to bring the performance benefits of kernel bypass
to unmodified applications with complex language runtimes
(e.g., Python, Node, Go, Java, etc.). It improves throughput by
1.6–7.0× and reduces CPU use by 1.2–3.8× for seven appli-
cations relative to Linux. Junction is available as open source
software: https://github.com/JunctionOS/junction.

2 Background & Motivation
Kernel bypass systems eliminate the kernel from the net-

work datapath, and replace it with an optimized user-level
networking stack that communicates directly with the NIC.
In this section, we first discuss why the existing approach to
kernel bypass has shortcomings that hinder adoption, espe-
cially in a cloud setting where density and compatibility are
crucial issues. Next, we discuss current progress in making
kernel bypass more general purpose. Finally, we discuss how
a lack of security further compounds these issues.
Density challenges. Cloud providers commonly pack many
instances on a machine to improve density [16, 55, 62, 68].
This is necessary because latency-sensitive applications have
variability in their demand for resources, and utilization can
only be kept high by filling in idle resources with best-effort

applications. Furthermore, in serverless environments, it is
typical for thousands of instances to remain active on a single
machine to prevent cold start delays [1].

Unfortunately, kernel bypass systems today can only sup-
port a limited number of instances on a machine (left side of
Table 1). One major problem is the widespread use of busy
spinning and dedicated cores [30, 67]. Because this approach
requires a minimum of one core per instance (and often many
more), the maximum number of instances is limited by the
number of cores.

New approaches to CPU scheduling that speed up core
allocation can overcome this limitation and eliminate waste
from busy spinning without sacrificing tail latency [15,42,50].
However, these systems rely on a dedicated core to make
scheduling decisions, so their scalability is still limited. For
example, Caladan is unable to scale beyond a few hundred
instances because of bottlenecks in its scheduler core.

Finally, the memory footprint of kernel bypass systems is
also a significant barrier to achieving high density. This is
especially true for kernel bypass systems that handle TCP
connections, like the Demikernel and Caladan, because they
cannot guarantee the application will consume packet buffers
the moment they arrive (e.g., what if they arrive out of order?),
so they must reserve a significant number of buffers to avoid
packet drops. There is also an additional per-core cost for
packet buffers in multicore kernel bypass systems because
each core must post enough receive buffers to handle a worst
case burst in traffic, which could be uneven across cores.

Compatibility challenges. Ideally, a kernel bypass system
should support unmodified binaries. Existing kernel bypass
systems instead require applications to be ported by devel-
opers (right side of Table 1). This is a significant barrier to
adoption. For example, at the time of writing, three recent,
state-of-the-art kernel bypass systems (eRPC, Demikernel,
and Caladan) support just a handful of applications. More-
over, all of these applications are key-value stores written
in C or C++, which are less challenging to port than typical
cloud applications. A recent survey of serverless functions
found that Node and Python were among the most popular
languages [57], and both require a full language runtime with
a complex set of OS dependencies that cannot be met by
existing kernel bypass systems.

Breaking compatibility is not easy in the cloud because of

https://github.com/JunctionOS/junction

Junction Kernel
…

Scheduler
uProc #0 uProc #0

Timer
Wheel

uProc #1

Instance #0

Host Kernel (e.g, Linux)
Junction Kernel

Instance #1

NIC Packet
Queues

NIC Event
Queue

Figure 1: Junction’s system architecture.

the significant investment developers have made in existing
software. One obvious solution would be to focus on rewriting
just the most popular applications. Unfortunately, this would
have little impact on efficiency overall because, even together,
these applications do not account for a large enough fraction
of overall resource usage [31].

Making kernel bypass general purpose. There have been
several recent efforts to make kernel bypass more general
purpose. For example, normally kernel bypass systems use
run-to-completion to optimize for short requests [6], but this
leaves them vulnerable to high tail latency when there is
dispersion in request service times. Shinjuku [29] and Persé-
phone [9] solve this through efficient, fine-grained preemption
and steering of short requests to separate cores respectively.
Many kernel bypass systems also use “share nothing” designs
that harm tail latency under load imbalance, an issue that
ZygOS addresses through work stealing [47]. Demikernel
provides unifying abstractions on top of different hardware
backends (e.g., RDMA vs. Ethernet) to reduce developer ef-
fort [67]. Finally, Arachne [50] and Shenango [42] show that
threading can be made fast enough to be used with kernel
bypass networking. Junction adopts several ideas from these
systems while solving the previously unaddressed challenges
of density and compatibility.

Security challenges. Most kernel bypass systems eschew
isolation and must be run as root. As a result, they depend on
other isolation mechanisms to be deployed safely in the cloud.
The most viable option is to run each instance in a separate
VM, but this increases overheads including extra TLB misses,
VM exit costs, and a larger memory footprint caused by the
guest kernel. In most cases, VMs also cannot take advantage
of the page cache, which further limits their density.

3 Junction Overview
Figure 1 provides an overview of Junction and highlights its

main components. Junction is designed to handle thousands of
instances on a machine. An instance is an isolated container
that runs one or more application binaries. From the host
kernel’s perspective, this container consists of a single process
(called a kProc) with a fixed set of threads (called kThreads)
that are statically initialized at startup time. The kThreads
are scheduled on cores by a centralized scheduler (left side
of Figure 1). An instance can load and run multiple binaries
in its shared address space (placing each at different offsets

in virtual memory). Each binary within an instance runs in a
userspace process abstraction called a uProc.

A copy of the Junction kernel runs inside each instance and
shares an address space with its uProcs. It directly handles
system calls from uProcs and provides OS abstractions (e.g.,
threading, networking, filesystems, signals, etc.) in userspace,
similar to a library OS [10, 46]. The Junction kernel supports
the Linux system call interface so that it can run existing
software without modifications.

The Junction kernel uses kernel bypass hardware (both
networking queues and CPU features) to provides its OS
abstractions. As a result, most system calls can be handled
entirely in userspace and it is only necessary to make system
calls into the host kernel to multiplex resources (i.e., cores and
memory)—all other host kernel system calls can be blocked.
Shifting OS functionality into userspace improves perfor-
mance by reducing the frequency of boundary crossings, and
limits the attack surface by allowing untrusted programs to
exercise only very small parts of trusted host kernel code.

Throughout this paper, we assume Linux is used as the
host kernel, but any standard OS could serve this purpose.
Junction can coexist with normal Linux processes that do not
use Junction. As a result, Junction can take full advantage of
existing debugging and profiling tools; and the control plane
and management functions of a standard Linux environment.

Networking and communication. Like other kernel bypass
systems, Junction instances are provisioned with one NIC
send and receive queue pair per kThread. This improves per-
formance by allowing concurrent access to the NIC with-
out synchronization. The Junction kernel provides a high-
performance TCP/IP and UDP networking stack, which en-
able uProcs to communicate with the outside world. uProcs
within the same instance can communicate with each other
using standard inter-process communication (IPC) primitives
(e.g., pipes), but different instances on the same host may only
communicate via loopback networking through the NIC.

Threading. The Junction kernel includes a high-performance,
user-level threading library that uses work stealing to balance
light weight user-level threads (uThreads) across kThreads.
uProc threads (i.e., those created when starting or via
clone3()) are mapped to uThreads. uThreads are also used
for various internal tasks like network protocol processing.
Each kThread runs a scheduling loop that polls local queues
for packets and timeouts, and runs pending uThreads.

Core scheduling. Junction relies on a microkernel-style
scheduler to make core allocation decisions [15, 23, 42, 48]. It
runs on a dedicated core and busy polls control signals to de-
cide how and when cores should be allocated to each instance
(indicated by the red double arrow in Figure 1). Instances can
use as few as zero cores when idle, or more than one if de-
mand justifies it (up to a per-instance limit). For each instance,
the scheduler monitors timer expirations and queueing delays
in both thread and network queues, which are made visible

to the scheduler through shared memory. When the scheduler
grants a core to an instance, it selects one of its idle kThreads
and pins it to the core for the duration of the grant.

In addition to performing core allocation, the scheduler
assists the threading library in implementing fine-grained
timeslicing by sending user IPIs (UIPIs) [25] to cores where
a running uThread has exceeded its timeslice quantum. This
ensures that all uThreads can make progress, and that packet
queues are drained in a timely manner. It is also beneficial for
reducing tail latency when service time dispersion is high [29].
As an optimization, these interrupts are only sent when queued
packets or runnable threads are waiting to be processed.

Because Junction aims to support thousands of instances,
it employs novel techniques to ensure that control signals
can be monitored in a scalable way. A timer wheel keeps
track of the next timeout for each instance and a NIC event
queue provides notifications of packets arrivals. These reduce
how often the scheduler has to poll shared state inside each
instance to determine if it could benefit from additional cores.
We discuss these optimizations in more detail in §5.

4 Security
The conventional wisdom is to use virtual machines as

the isolation boundary for the cloud to reduce interactions
between untrusted code and the host kernel. However, virtu-
alization still exercises a large amount of trusted code in the
host kernel, resulting in a significant attack surface [3, 65].
Junction, by contrast, delivers OS abstractions directly on
top of kernel bypass hardware, significantly reducing its re-
liance on the host kernel. In this section, we discuss Junction’s
security design in more detail.

4.1 Threat Model
We assume each instance can run arbitrary and potentially

malicious code, so strong memory isolation is needed between
instances and the host kernel. We are particularly concerned
about a malicious user exploiting a bug in the host kernel
through a system call or VM exit. Today’s host kernels have
wide attacks surfaces that can exercise millions of lines of
code, and transient execution attacks potentially expose ad-
ditional vulnerabilities in this code [4]. This poses a large
security risk in cloud deployments [1, 17].

The Junction kernel, by contrast, runs as a separate copy
in each instance. Each copy shares an address space and has
fate sharing with the uProcs it handles, but is strictly isolated
from other instances. Therefore, if a uProc corrupts its mem-
ory or exploits a bug in a system call implementation, it can
only harm its own availability. Through the same reasoning,
validating system call arguments or preventing transient exe-
cutions attacks is not required for isolation with the Junction
kernel. This unlocks many opportunities for optimization that
are not available to the host kernel (§6.2). uProcs that are mu-
tually trusting can run in the same instance at lower overhead,

Category Syscalls

CPU scheduling yield_core()
Memory management mmap(), munmap(), madvise(),

mprotect(), mremap()
Loading binaries open(), close(), pread64()
Logging (optional) write()
Process management exit_group()

Table 2: System calls that Junction requires from the host kernel.

or in separate instances if isolation is needed.
The NIC is trusted and we assume it can provide network

virtualization and packet scheduling across multiple instances.
NICs with these capabilities are commonly deployed in pub-
lic clouds today (e.g., Microsoft Catapult [12] and Amazon
Nitro [2]).

4.2 Host Kernel Isolation

Isolation mechanisms. Junction relies on kProcs, which are
normal Linux processes, for isolation of its instances. Each
kProc installs a strict seccomp filter that limits access to a
restrictive set of system calls. Because Junction uses the
page cache to improve density, an instance is given read-only
access to a chroot jail directory with needed binaries and
shared libraries. Junction instances also have direct access
to the NIC through a set of queues and a dedicated page for
MMIO doorbell writes to PCIe. The NIC is aware of distinct
Junction instances, and provides each instance with its own
queues, pinned memory, and doorbell page.

Allowed system calls. Junction requires only 11 system
calls, as shown in Table 2. Two of these are used only
rarely: write() is used for debug logging to stdout, and
exit_group() is used only once when the instance ex-
its. Similar to Caladan [15], Junction uses a single block-
ing system call, yield_core(), to yield and allocate cores.
This call is provided by a custom Linux Kernel module,
and coordinates with the scheduler—informing it when a
kThread yields voluntarily. The module allows the scheduler
to wake a kThread on a specific core and unblock it from its
yield_core() call.

Junction requires five system calls to manage memory. This
is important for density because instances rarely need all of
the memory they reserve [1]. First, Junction relies on mmap()
to allocate anonymous memory and to map files. Second, it
relies on mprotect() and munmap() to change mapping per-
missions and remove mappings respectively. Third, mremap()
is needed to adjust existing mappings. Finally, madvise() is
exposed to provide hints to the Linux Kernel, such as releas-
ing unused memory without modifying the VMA, which has
lower overhead than munmap().

Page cache. To minimize the attack surface, we initially con-
sidered a design where Junction did not access the Linux
Kernel file system at all, instead delivering files over the net-

work (e.g., 9P) or in memory. However, we realized that to
achieve density, limited access to the Linux file system is
necessary. This is because the host kernel is the only layer
that can mediate access to the page cache, allowing differ-
ent processes to share read-only mappings to the same disk
blocks. Reducing the memory footprint in this way allows
Junction to achieve higher density (§8.6).

Our goal, therefore, is to expose just enough of the file
system to make it possible to leverage the page cache. Using
the chroot jail, an instance can use open() to access allowed
files in read-only mode and close() when done. mmap()
is used to map the files into memory (i.e., ELF segments),
enabling use of the page cache. pread64(), which takes an
offset and is designed to scale well across cores, is also made
available to allow the contents of files to be read before they
are mapped into memory. Before adopting its syscall filter,
an instance scans the files and folders in its jail and caches
the metadata (e.g., file size), so it does not need access to any
further file-system calls when running.

5 Optimizing for Density
Junction’s goal is to deliver high networking throughput

and low latency, like existing kernel bypass systems, while
also packing significantly more instances on a machine. This
required us to resolve several problems related to the use of a
large number of NIC receive queues.

Normally, kernel bypass systems assign a separate receive
queue to each core in order to avoid synchronization over-
heads so they can scale linearly with the number of cores.
Although Junction differs in that it adjusts cores dynamically
based on load, it still must assign enough receive queues to
each instance so that one will be available for each kThread
that might be running. As a result, the number of queues
needed is the maximum number of cores per instance times
the number of instances.

Modern NICs can easily scale to thousands of queues, but
using them to pack many instances on a machine still poses
significant challenges. First, buffer memory consumption is
a key limit for density because each receive queue must post
enough buffers to accommodate a worst-case burst in arriving
packets, which is exacerbated by the unevenness in traffic
across cores. Second, the cost of polling every queue in the
core scheduler becomes prohibitive, with cache pollution caus-
ing a performance collapse. We now discuss our solution to
each of these problems in more detail.

5.1 Minimizing Buffer Memory Consumption
Existing kernel bypass systems maintain large pools of

memory for buffers that are used to send and receive pack-
ets through the NIC. These buffers must be available to the
NIC for direct memory access, so the backing memory must
be pinned to prevent the host kernel from swapping it out.
Pinning buffers at the time of sending/receive packets is pro-

Refill
thread Shared

buffer queue

RQ 1

RQ 2

RQ 3

Pkt 1

Pkt 2

Pkt 3
Buffer

Figure 2: Junction reduces memory use through (A) a shared buffer
queue that supplies per-core receive queues (RQs), and (B) packing
many packets in each buffer (even when delivered to different RQs).
A refill thread replenishes buffers.

hibitively expensive, so it is instead better to maintain a pool
of pinned buffers. Sizing this pool requires consideration of
several factors, including the number of open connections
(i.e., the total outstanding send and receive windows for a
protocol like TCP), the worst-case delay in packet processing
time, and the network round trip time. To handle variability
in processing time and to absorb bursts, it is common to keep
receive rings full with buffers so that packets are not dropped.

Kernel bypass systems often provision pinned memory well
in excess of the minimum amount needed. One major factor
that contributes to this is the use of per-core receive queues.
Traffic is distributed among receive queues using RSS, which
is susceptible to skew and can lead to bursts on some queues.
Each queue must have enough posted buffers to ensure that
it can handle any traffic distributed to it. For example, kernel
bypass network stacks can drive a single TCP flow at speeds
greater than 100Gb/s. Because such a flow would be hashed
to one receive queue at random, each queue must have enough
buffers available to handle this high rate of traffic, despite the
fact that only one queue’s buffers will be consumed. Thus
the amount of buffer memory needs to scale linearly with the
number of cores an instance may be using.

A second factor that contributes to wasted memory is the
need to support variably-sized packets. Normally, each packet
that arrives consumes a single posted buffer, which must be at
least MTU-sized. Small packets consume only a fraction of
these buffers, so to ensure that enough bytes are available to
buffer small packets that arrive at high rates, the buffer pool
must be made proportionally larger.

As shown in Figure 2, Junction takes advantage of recent
NIC hardware to overcome both of these problems. First, it
uses a per-instance shared buffer queue to post buffers instead
of posting them separately in each receive queue. This allows
posted buffers to be shared amongst the receive queues, elim-
inating the need to scale the buffer pool with the number of
cores. Second, it avoids fragmentation in large packet buffers
by allowing many packets to be placed consecutively in each
buffer, reducing the minimum memory consumed per-packet
from MTU size (between 1500B to 9000B) to 256B.

Using a shared buffer queue requires coordination across
cores, which can add overhead and limit scalability. The host
cannot refill a slot in the buffer queue until the NIC has fin-

ished writing to it, which is detected by tracking arrivals at
each receive queue. Additionally, because many packets can
be stored in a single buffer, a buffer cannot be reused until
all of its packets are freed. This is especially challenging be-
cause packets from a single buffer can be spread across many
receive queues, requiring coordination across cores when free-
ing packets and refilling the shared buffer queue.

Prior work on ShRing [45] proposed hardware modifica-
tions to the NIC to enable efficient coordination. However,
Junction reduces synchronization overhead with a software-
only approach by using per-core reference counters for each
slot in the shared buffer queue and each buffer in the buffer
pool (i.e., no cachelines are shared). Because buffer sizes
can be large (we picked 16KB), the shared buffer queue can
be kept small, resulting in low per-core memory overhead
(about 512B). A high-priority refill thread is responsible for
managing the shared buffer queue: it scans the counters and
replenishes queue slots with free buffers. We provide more
details on our approach and how it compares to ShRing in
Appendix B.

5.2 Scalable Queue Polling

Using a spinning core for rapid core scheduling eliminates
the need for each instance to spin-poll its own receive queues,
allowing idle cores to be reallocated to applications that need
them (§2). The scheduler polls shared memory locations in a
loop to monitor queueing delays across each instance’s net-
work receive queues, thread runqueues, and timers. With large
numbers of instances, the polling loop can take a long time to
complete, leading to delays in wakeups and increases in la-
tency. Furthermore, polling many locations pollutes the cache
for the scheduler, leading to additional slowdowns. Junction
avoids polling thread runqueues for inactive applications, but
must still track pending timers and arriving packets as both
may warrant an immediate core allocation for an idle instance.

Junction makes two main modifications to the scheduler
core model to dramatically improve its scalability by reduc-
ing the amount of memory that the scheduler must inspect
in each scheduling pass. First, it uses a set of NIC features
in a novel way to avoid continuously polling idle network
queues. Junction allocates a single event queue and a ded-
icated doorbell page for the scheduler core. Each time the
scheduler observes an empty receive queue, it arms the queue
by marking the index of the current head pointer and writing
to the doorbell. When a packet arrives on an armed queue,
the NIC writes an event into the event queue and disarms the
queue. The scheduler continually polls the event queue and
can react immediately when a packet arrives at an idle queue.
This feature is available on modern Mellanox NICs.

Expiring timers may also require cores to be allocated
to idle instances. High resolution timers are important for
datacenter workloads; for example, they may used to detect
when TCP segments need to be retransmitted, or an RPC

Subsystem Hardware Feature Syscall Alternative

Networking NIC Queues socket(),recv(),send()
Randomness RDRAND, RDSEED getrandom()
Threading (TLS) WRFSBASE arch_prctl()
Signals SENDUIPI, XSAVEC tgkill()

XRSTOR, UIRET rt_sigreturn()

Table 3: Kernel bypass hardware features used by Junction.

has failed. In order to ensure that instances with timers are
woken with minimal delay, Junction’s scheduler employs a
second optimization: a high resolution (16 µs) hierarchical
timer wheel [61]. The timer wheel allows the scheduler to
ignore instances with timers that expire far out in the future
and monitor only instances that are either active or have im-
mediately pending timeouts.

We also optimize the memory footprint of the data struc-
tures used by Junction’s scheduler to ensure that the state
from each instance occupies as few cache lines as possible.
Additionally, state is arranged to avoid false sharing, i.e., state
needed only when an application is active is kept separate
from state needed when an instance is idle. Together, these
optimizations overcome the scalability bottlenecks of a cen-
tralized core scheduler and enable Junction’s scheduler to
manage thousands of active instances without latency issues.

6 Linux Compatibility

In line with experiences reported by other researchers, we
found that it was tractable for a small team to implement
enough of the Linux interface to run a wide range of applica-
tions [20, 22, 46]. Constraining our goal to only supporting
cloud applications made this easier. For example, we could ig-
nore desktop features like graphics, input devices, and sound,
which would have required significantly more developer ef-
fort. In addition, most cloud applications are built for specific
runtime systems and do not perform system calls directly.
Therefore, targeting all the system calls needed by a partic-
ular runtime can enable a broad swath of compatibility. For
example, we found Junction could run any Go program after
implementing the set of system calls needed by its runtime.

We had to overcome two challenges to achieve Linux com-
patibility. First, we had to provide OS features that are not
available in prior kernel bypass systems, but are necessary for
cloud applications. Second, we had to minimize the overhead
of compatibility in order to not squander the performance
benefits of kernel bypass. We address the first challenge by
shifting OS abstractions into userspace and by building them
on top of kernel bypass hardware (Table 3). We address the
second challenge by exploiting fate sharing and a shared ad-
dress space to unlock performance optimizations. We discuss
each solution in more detail next.

6.1 Adapting OS Features to Kernel Bypass

Loader and multiprocess support. The Junction kernel in-
cludes its own ELF loader to load uProcs inside an instance.
The ELF loader is invoked automatically at startup to load
the first uProc—a path to the program image is provided as a
configuration parameter. The ELF loader can also be invoked
later by the execve() system call, which enables loading of
additional uProcs. During ELF loading, Junction creates a
new uThread and populates its stack with environment vari-
ables, arguments, and an auxiliary vector. The auxiliary vector
contains several important parameters that are needed to emu-
late a Linux process environment [35].

In an earlier prototype of Junction, the Junction kernel was
instead deployed as a library that was linked with the appli-
cation, similar to a Unikernel [24, 34]. We decided against
this approach, however, because it required compiling a new
binary for each program. This breaks compatibility with exist-
ing Linux binaries and also makes it more difficult to support
multiple processes within an instance.

Multiprocess support is an important feature for some cloud
applications (e.g., microservices) because they rely on side-
cars for RPC handling, logging, and other services. Sidecars
are normally trusted by the application, so it is acceptable to
run them together, potentially without memory isolation [56].
In Linux, a new process is created via fork(), which spawns
a separate address space. However, Junction is a single ad-
dress space OS, so it cannot fork to create new uProcs.

To launch multiple uProcs, Junction instead relies on
vfork(), an optimized version of fork() that delays the cre-
ation of a new address space until execve() is called. Linux
uses this to fuse the fork operation with the loading of the
program, eliminating the need to clone the page table. How-
ever, Junction transparently co-opts the vfork() + execve()
sequence to provide a different behavior. Instead of creating
a new address space, it finds an empty location in the exist-
ing address space and loads the program there, allowing it
to support multiple uProcs in one instance. To avoid colli-
sions, a program must work correctly in any location in the
address space, so at most one uProc can be compiled without
position-independent code (PIC) enabled. Fortunately, for se-
curity reasons, PIC is enabled by default in most datacenters.

Threading. User-level threading packages are gaining trac-
tion because of their increased performance (e.g., Java’s
Project Loom [49] and the Go Runtime [39]). Junction brings
the same benefits to unmodified binaries by shifting all thread-
ing operations (e.g., creating threads, acquiring mutexes, con-
text switching, etc.) into userspace instead of going through
the host kernel. Junction maintains a separate uThread run-
queue in each kThread and uses packet arrivals, timeouts,
signals, and other events to wake uThreads.

Junction provides threading support at two layers of ab-
straction. First, it supports the low-level Linux system calls
that are required for threading (e.g., futex(), clone(), etc.).

This is needed to achieve compatibility with programs that use
nonstandard threading libraries. Second, for greater efficiency,
it overrides glibc’s pthread library, and provides a custom im-
plementation that is integrated directly with Junction and does
not make use of these system calls. For example, futex()
must normally do a hash table lookup to find if a thread is
blocking on an address, but Junction can instead reference the
mutex object directly to find the blocking uThread. Another
challenge not addressed in prior kernel bypass systems is sup-
port for thread-local storage (TLS). Junction’s solution is to
rely on the WRFSBASE instruction to switch between thread-
local regions during each uThread context switch. Without
this instruction, performance would be significantly worse as
the host kernel’s arch_prctl() system call would have to
be invoked at each context switch (§8.6).

Signals. Surprisingly, we found that many cloud applications
depend on signals for normal operation. For example, Go
uses signals to preempt and reschedule Go Routines, and the
Hotspot JVM uses signals as an optimization to avoid explicit
NULL pointer checks. This reflects two separate forms of
signals supported by Linux: 1) those that are sent internally
by an application (e.g., via tgkill()) and 2) those that are
generated by CPU exceptions (e.g., page faults).

The difficulty in supporting signals is that their behavior is
highly customizable (e.g., setting handlers, masking signals,
using alternate stacks, etc.). However, exposing sigaction()
and sigaltstack() through the host kernel would signifi-
cantly widen the attack surface. Signals also compose poorly
with Junction’s threading layer, because signals must nor-
mally wake or preempt a specific uThread, but the host kernel
is only aware of kThreads.

Instead, Junction uses UIPIs [25] to reduce the involvement
of the host kernel. When a uThread invokes tgkill() to send
an internal signal, the Junction kernel uses the SENDUIPI
instruction to send a UIPI (if preemption is necessary). We
discuss our implementation with UIPIs further in Appendix A.

CPU exceptions, however, still requires involvement from
the host kernel because the CPU does not support user-level
handling of these faults. Junction statically configures the host
kernel with handlers for every possible CPU exception signal
(using an alternate signal stack) before dropping privileges.
When a uThread triggers a CPU exception, the host kernel
sets up a trapframe on an alternate stack and invokes Junc-
tion’s signal handler. Thankfully, UIPI’s UIRET instruction
obviates the need for the host kernel’s rt_sigreturn() sys-
tem call since it can atomically restore stack and instruction
pointers. Though a system call is typically needed to unblock
signals that are masked during delivery, Junction configures
its Linux signal handlers to never alter the signal mask. This
is appropriate because CPU exceptions cannot be masked.

When an interrupt or Linux signal is delivered, Junction
uses its internal knowledge of uProcs and their signal configu-
ration to route the signal to the right handler, which pushes the
signal’s trap frame onto a uThread’s stack. This potentially

includes waking a uThread or preempting a running uThread.
Other OS features. Junction provides support for network-
ing sockets, IPC (e.g., pipe() and loopback networking),
waiting for events (e.g., select(), poll(), epoll(), and
eventfd()), a virtual filesystem, memory management (e.g.,
mmap()), time keeping, and many more OS features not found
in prior kernel bypass systems. We adopted several novel
strategies to reduce overheads, discussed next in more detail.

6.2 Performance Optimizations

System call handling. The main mechanism for intercept-
ing system calls in Linux is seccomp, which can generate a
signal for each system call it intercepts. Junction uses this
mechanism as an occasional fallback, but we found that it
had a prohibitive level of overhead for intercepting all system
calls. A more efficient alternative would be to patch occur-
rences of the SYSCALL instruction so they jump directly into
the Junction kernel. Researchers recently discovered a clever
trick to support this without exceeding the instruction length
of SYSCALL, eliminating the need for binary rewriting [66].

However, Junction uses a different strategy to squeeze out
even more performance. When a program is loaded, Junc-
tion’s ELF loader transparently replaces glibc with a modified
version. We found that nearly all system calls are performed
through glibc so this was a good place to intercept them. The
modified library is designed to call into Junction during each
system call. This includes the use of a trampoline page that
finds the location of Junction, which is randomized for ASLR.

One key benefit to this approach is that it allows each sys-
tem call to be invoked like a normal function call with stan-
dard calling conventions. This is favorable for performance
because some general purpose registers and all floating point
and vector registers can be safely clobbered. As a result, un-
like the Linux Kernel, the Junction kernel can be compiled
with all optimizations enabled, including those that use vector
instructions. This also means that significantly less register
state has to be saved and restored when context switching be-
tween threads that are blocked. However, preempted threads
still require all state to be restored. Because of fate sharing,
there is also no need to apply transient execution attack mitiga-
tions during system calls [4]. Instead, these are only necessary
when entering the host kernel.
Reducing compatibility overheads. Junction further reduces
overheads by changing the way system calls are implemented.
First, Junction does not need to mitigate time-of-check to time-
of-use (TOCTOU) attacks, again because of fate sharing. As a
result, Junction does not copy system call arguments. Second,
the UNIX standard has many examples of undefined behavior.
In the Linux Kernel these have to be implemented carefully
to avoid compromising security, but in Junction they can be
implemented in whatever way achieves the best performance.

A good example of this opportunity is that if a file descrip-
tor is closed while select() is monitoring it, the behavior

is undefined. The Linux Kernel still requires extra locking to
prevent race conditions. On the other hand, Junction allows
these race conditions to happen and avoids the cost of locking
because it assumes a correctly written program will never trig-
ger undefined behavior. However, Junction must still perform
all standard argument checking (e.g., is a file descriptor valid)
because Linux programs depend on these behaviors.

7 Implementation
Junction is implemented in about 12,000 lines of C++23

code and runs on modern x86 CPUs. It is linked against Cal-
adan’s runtime (14,000 LOC), which it uses as a low-level
library for networking and threading routines. Caladan pro-
vided useful support for centralized core scheduling. However,
we had to heavily modify it to scale to more instances and
to run under our restricted host kernel interface. Moreover,
we completely replaced its mlx5 driver (for modern Mellanox
NICs) to enable shared buffer queues and multi-packet receive
buffers (5,000 LOC); and we modified its kernel module to
support UIPIs (500 LOC). The modified NIC driver replaces
Linux’s ibverbs and tightly integrates with the scheduler, al-
lowing it to expose the NIC event queue.
Linux compatibility. Junction’s current implementation sup-
ports 126 Linux system calls. We found this subset sufficient
to run language frameworks including Python, Go, Node.js,
and Java, as well as a variety of applications written in C,
C++, and Rust. With the exception of Go, Junction runs all
of these as unmodified Linux binaries. Go programs belong
to a rare class of applications that make most of their system
calls outside of libc (the only one we encountered). To deliver
the best performance, we added a new OS target to the Go
compiler that uses function calls and our trampoline instead
of system calls. However, seccomp can still handle system
calls even for unmodified Go binaries.

8 Evaluation
Our evaluation aims to answer the following questions:

1. How does Junction’s performance compare to state-of-
the-art kernel bypass systems (§8.2)?

2. How many active instances can Junction pack on a ma-
chine (§8.3)?

3. Can Junction achieve compatibility with unmodified
cloud applications (§8.4)?

4. Can Junction be securely deployed in a multi-tenant
cloud (§8.5)?

5. What factors contribute to Junction’s better performance
and higher density (§8.6)?

8.1 Methodology

Experimental setup. Most experiments are run on a server
with an Intel Xeon 6354 3.6 GHz 18-core CPU, 64GB of
RAM, and a 200GbE Mellanox ConnectX-6 NIC. Scaling

Files Net. Mem. Process
Threads/

Sync. Signals Rand. Timers
Multi-

threaded
Garbage
Collected

Kernel
Time (%)

Memcached (C) 6 20 4 12 4 2 1 1 ✓ ✗ 86.4
Redis (C) 11 14 5 9 5 3 1 1 ✗ ✗ 84.2
Masstree (C++) 4 14 5 6 4 4 0 1 ✓ ✗ 83.2
nginx (C) 5 9 4 10 2 0 1 1 ✗ ✗ 76.1
Node.js HTTP 7 12 6 14 4 2 1 0 ✗ ✓ 44.7
Python HTTP 11 10 4 11 3 1 1 0 ✗ ✗ 63.5
Go HTTP 4 9 4 6 4 3 1 1 ✓ ✓ 55.3
Rocket (Rust) 7 13 5 7 4 0 1 0 ✓ ✗ 44.7
Tomcat (Java) 15 18 5 15 5 4 1 2 ✓ ✓ 51.6

Table 4: Characteristics of evaluated applications, including unique system calls used grouped by kernel subsystem, whether an application is
multithreaded or uses garbage collection, and ratio of time spent in the kernel (when running in Linux).

Linux eRPC Junction
0
5

10
15
20

Th
ro

ug
hp

ut
(M

 O
PS

)

Masstree

Linux Demikernel Junction
0.0

0.25
0.5

0.75
1.0

Redis

Linux Caladan Junction
0
5

10
15

Memcached

Figure 3: Performance comparison of Junction with state-of-the-art kernel bypass systems. Junction offers higher throughput than eRPC and
Demikernel and is competitive with Caladan despite requiring no code modifications.

experiments run on a server with an Intel Xeon 5420+ 2.7GHz
28-core CPU and 128GB of RAM. Unless otherwise noted,
we use a set of client machines connected to a 100GbE switch
to generate load. The server runs Linux Kernel version 6.2,
with the default mitigations enabled for CPU vulnerabilities.
We use an open-loop kernel bypass load generator with Pois-
son arrivals [42] for latency measurements.

Systems. We compare Junction to three state-of-the-art ker-
nel bypass systems: eRPC [30], Demikernel [67], and Cal-
adan [15]. We also compare Junction to two state-of-the-art
cloud isolation systems: Firecracker [1], a micro-VM iso-
lation system, and gVisor [17], a secure container isolation
system that also implements the Linux system call interface
in userspace. Finally, we show performance relative to native
Linux. We made every effort to tune each system for its max-
imum performance, and ensured that performance matched
what is reported in other studies.

Applications. Table 4 characterizes the applications that we
use throughout the evaluation, which include a range of web
servers and various in-memory database and key-value stores.

8.2 Comparison to other kernel bypass systems
Figure 3 shows that Junction delivers performance to un-

modified binaries that is on-par with or better than existing
kernel bypass systems that require modifications to applica-
tions. The set of applications that have been ported to existing
kernel bypass systems is limited and disjoint, making it dif-
ficult to use the same application to evaluate each system.
Instead, we select one of the ported applications that was used
originally to evaluate each kernel bypass system and compare
to an unmodified Linux binary running in Junction and Linux.

Table 1 shows the porting effort required for each of them.
Except for Demikernel, which doesn’t support multiple cores,
we configure each system to use up to 16 cores.
eRPC. We compare against eRPC using the in-memory
database called Masstree [36]. eRPC’s port of Masstree re-
places its included TCP/UDP server with its own wrapper
around the database and a custom wire format. We compare
the performance of eRPC running with RoCE versus Junc-
tion and Linux using standard TCP. We provision 128 client
threads across 8 machines to issue a mixture of 50% GET
and 50% PUT requests to the server (with four outstanding
requests per thread). Because of eRPC’s custom wire proto-
col, we use eRPC’s client to measure eRPC’s performance,
and the Linux binary running in Junction to measure Linux
and Junction. Junction achieves higher throughput (over 21
MOp/s) than eRPC (19.3 MOp/s), both significant improve-
ments over the Linux baseline. We observe that eRPC spends
up to 10% of its CPU time handling futexes while allocating
memory, an overhead that Junction largely eliminates.
Demikernel. We benchmark Demikernel using Redis and its
included redis-benchmark utility. We run the redis-benchmark
client inside Junction to measure throughput of GET and SET
requests over TCP connections. The Linux baseline achieves
260,000 RPS while consuming 1.5 CPU cores (this includes
softirq time). Demikernel improves throughput by about 7%
while using only 1 CPU core. Junction improves through-
put by 248% over Linux, while also using only 1 CPU core.
Junction’s TCP stack is more efficient (e.g., it uses a fast-
path [32]), and we suspect this is the main contributor to its
performance advantage relative to Demikernel in this setting.
Caladan. We use memcached [13] to compare performance
to Caladan [15], with additional detail on tail latency in Fig-

0 2M 4M 6M 8M 10M 12M 14M 16M
Offered Load (Requests/s)

100

102

104

La
te

nc
y

P9
9

(μ
s)

Memcached
Linux (libevent)
Junction (libevent)
Junction (threaded)
Caladan (threaded)

Figure 4: Latency for native memcached binaries (libevent) run-
ning in Linux and Junction, as well as two ported versions that
replace libevent with per-connection threads (threaded) written
against POSIX and Caladan interfaces. Junction can nearly match
the throughput of Caladan in both cases, but the added overheads of
libevent harm latency at higher throughputs.

103

105

La
te

nc
y

P9
9

(μ
s)

Firecracker
Caladan*

Linux
Junction

0 500 1000 1500 2000 2500 3000 3500 4000
Number of applications

0
30
60
90

120

M
em

or
y

Us
ed

(G
B)

Figure 5: Performance and resource consumption while varying
the number of single-threaded Rocket web servers packed into one
machine. Load is fixed at 150K RPS and spread evenly across all
instances. Junction supports up to 3,500 active instances while using
3.33× less memory per instance than Firecracker and keeping tail
latency 35× lower than Linux.

ure 4. This comparison highlights the performance costs of
using unmodified binaries because the two systems share a
user threading library and TCP stack. We found that the while
the native Linux binary in Junction could nearly match the
throughput of Caladan, its tail latency degraded more quickly.
This is because the Caladan version of memcached entirely
removes libevent and epoll(), which were used to mul-
tiplex large numbers of connections across a smaller set of
threads. We performed the same set of modifications to the
Linux binary and evaluated its performance on Junction. The
modified version (threaded) shows that Junction can match
the latency profile of Caladan, suggesting that limiting the
number of threads is important for OSes with high kernel
crossing overheads, but can be detrimental otherwise due
to head-of-line blocking. Thus, an optimal version of mem-
cached for Junction would merely spawn a thread for each
connection. Nevertheless, this result shows that Junction can
offer dramatic improvement for low-latency applications even
without modifications.

8.3 Density
We now demonstrate that Junction can densely pack many

active instances on a machine and deliver low tail latency.
Figure 5 shows an experiment where we provision increasing
numbers of instances of a multi-threaded HTTP server written
in Rust called Rocket. We use a host with 128GB of RAM.
Each instance is provisioned with 8 threads. We offer a total
load of 150,000 RPS to the machine, evenly divided across all
instances. At each instance count, we show the aggregate tail
latency experienced across all instances and the total memory
consumption. We compare Junction to a Linux baseline and
to Firecracker (designed to have a low per-instance memory
footprint while providing an isolated VM environment). We
also show Caladan*, which mixes Junction with Caladan’s
network stack that is not optimized for density; this scales
to only 180 instances. Linux consumes hardly any memory
per instance (<1MB) and can scale far beyond Junction, but
has poor tail latency. Firecracker’s memory overhead is 8.6×
lower than Caladan’s but suffers from even poorer tail latency.
Junction scales to 3,500 instances before running out of mem-
ory, with p99 latency below 350 µs, a 35× improvement over
Linux.

8.4 Compatibility
We demonstrate that Junction achieves broad compatibility

for cloud workloads by benchmarking a suite of HTTP servers
written in several popular languages/frameworks. This col-
lection includes (1) nginx [51], a popular load-balancer and
proxy written in C, (2) Node.js’s built-in web server [40], (3)
a simple web server written in Python [60], (4) Go’s built-in
HTTP package [39], (5) the Rocket framework in Rust [53],
and (6) the Apache Tomcat framework in Java [58]. These
applications cannot be supported by any existing kernel by-
pass system without a large porting effort. We compare them
to native Linux, and to both gVisor and Firecracker. We con-
figure each application to use up to 8 cores, though several
are single-threaded. All are configured to deliver small static
responses (14–600 bytes); nginx is the only one configured
to read its response from a file (stored in a RAM-backed file
system). We use 200 concurrent connections with connection
keep-alives to avoid the cost of additional TCP handshakes.

Figure 6 shows the p99 latency and total CPU utilization
across varying load for each application. For all applications,
Junction provides superior throughput, latency, and CPU ef-
ficiency. Relative to Linux, Junction improves throughput
by 1.62-3.69× and uses 19-65% less CPU when handling
Linux’s peak loads. Junction shows even larger gains against
Firecracker and gVisor.

8.5 Attack Surface
Junction’s use of kernel bypass reduces the host kernel

attack surface relative to existing security-focused library

0
500

1000
1500
2000
2500

La
te

nc
y

P9
9

(μ
s)

nginx (C) Node.js HTTP Python HTTP Go HTTP Rocket (Rust) Tomcat (Java)

0 175 350
0
2
4
6
8

10

CP
U

Us
e

No
. o

f c
or

es

0 40 80 0 125 250 0 450 900 0 275 550 0 300 600

Firecracker gVisor Linux Junction

Offered Load (Thousand Requests/s)
Figure 6: Service response-time and corresponding CPU usage at varying offered loads. Junction offers higher throughput and lower tail
latency while also using fewer cores compared to other systems.

Total Mem.
Threads/

Procs Sync I/O Misc.

Junction 11 5 2 0 4 0
gVisor (Sentry) [19] 64 7 11 2 34 10
gVisor (Gofer) [18] 57 4 11 1 36 5
Drawbridge 36 3 7 7 12 7

Table 5: Comparison of allowed syscalls to the host kernel for
Junction and two other library operating systems.

Unique syscalls Total syscalls (/s) VMEXITs (/s)

Junction 4 9,603 n/a
Firecracker [1] 5 68,162 102,027
gVisor [17] 21 99,879 13,084
Linux 14 34,087 n/a

Table 6: Kernel crossings (per second) when running Rocket for 10s
with an offered load of 10,000 RPS.

OSes. To demonstrate this, Table 5 shows the total number
of syscalls required to run Junction, compared to gVisor and
Drawbridge [46]. Drawbridge is a library OS that provides
applications with a Windows 7 interface (in total over 100,000
API calls) using 36 system calls. gVisor is broken down into
its two components, the Sentry and Gofer; the Sentry imple-
ments much of the system call interface but proxies access to
files through the Gofer to add defense in depth. Because Junc-
tion uses kernel bypass NIC and CPU features to implement
OS functionality, it requires 3.2–7.6× fewer syscalls to run.

Table 6 further demonstrates Junction’s lack of reliance
on the host kernel by showing profiling output from strace
while running an 8-threaded Rocket instance at 10K RPS (af-
ter initialization). We report host kernel interactions through
both system calls and VMExits. 99% of Junction’s syscalls
are to yield_core(), which is called when the application
idles between requests, enabling other applications to run. The
remaining 1% of calls are exclusively allocating and releasing
memory. Linux, gVisor, and Firecracker all rely heavily on

system calls that read from, send to, and block on file descrip-
tors. Firecracker and gVisor interact with a Linux TAP device
and virtio queues, while the Linux instance interacts with
sockets. Both gVisor and Firecracker use ioctl() to interact
with KVM. gVisor also heavily uses futexes and timers.

8.6 Performance Analysis
To better understand Junction’s performance, we evaluated

the impact of several of our design choices and mechanisms.

Performance optimizations. Figure 7 demonstrates how vari-
ous aspects of Junction’s design contribute to its performance.
Both (1) using the Linux TAP driver to send and receive pack-
ets (as gVisor and Firecracker do) and (2) using seccomp
filters to trap and intercept syscalls severely limit throughput
for Junction instances. Per-core kernel bypass queues allow
it to scale to significantly higher rates. Additional optimiza-
tions to enable compatibility with unmodified binaries further
improve performance: both the use of hardware instructions
to support TLS (WRFSBASE) and the optimization to allow
it to clobber floating point state during system calls. These
techniques allow Junction to nearly match the performance
of Caladan (i.e., the same TCP stack without compatibility).

Pinned memory. We quantify the improvements from adopt-
ing shared buffer queues and multi-packet buffers on the mem-
ory footprint of a Junction instance in Figure 8a, which shows
the amount of memory consumed by 8-threaded instances
with buffer pools sized to accommodate peak throughput. En-
abling shared buffer queues shrinks the footprint by 35%,
and enabling multi-packet buffers shrinks the footprint by an
additional 48%, yielding a 33MB footprint per instance.

Scaling core allocation. We evaluate the two techniques
discussed in §5.2 to scale the core allocator in Figure 8b.
This experiment uses the same scenario as Figure 5. Enabling
notifications from the NIC to a centralized queue allows the
scheduler to scale to handle an additional 4× the number of

Page Cache Sharing Total CPU Utilization
None 65%
+ Sharing Junction Kernel 60%
+ Sharing common libraries 59%
+ Sharing Rocket binary 36%

Table 7: Impact on CPU consumption of varying page cache sharing
strategies for Rocket in Junction with 1500 instances.

0 2 4 6 8 10 12 14 16
Max requests per second (millions)

Baseline (TAP)
+ 1 Kernel bypass queue
+ Patched glibc

+ Per-core queues
+ WRFSBASE
+ FP optimization

Caladan

Figure 7: Contributions of several elements of Junction’s design to
its performance (using memcached).

0 20 40 60 80 100
Memory per instance (MB)

No Buffer Pool Optimizations
+ Shared buffer queues
+ Multi-packet buffers

No Buffer Pool Optimizations
+

(a) Memory optimizations.

0 1000 2000 3000
Max instances

No Scheduler Optimizations
+ NIC Notifications
No Scheduler Optimizations
+
+ Timer Wheel

(b) Scheduler scalability.

Figure 8: Contributions of techniques to improve density (allowing
more instances to be packed on a machine).

instances; the timer wheel scales it by an additional 1.69×.

Impact of page cache sharing We investigate the impact
of Junction’s page cache sharing (unsupported by VMs) in
Table 7 by varying which binaries and dynamically linked
libraries can be deduplicated. This experiment shows that
in extreme case where a large number of identical binaries
are operating at once, allowing page cache sharing results in
a 44% decrease in CPU consumption. This is because data
in instruction caches can be shared across instances, which
suggests that operators that favor statically-linked binaries
may be squandering performance under dense deployments.

9 Discussion

Hardware features. The CPU features Junction relies on are
available on all modern Intel and AMD x86 CPUs. The only
exception is UIPIs, which were recently introduced in Intel’s
Sapphire Rapid CPUs, so their availability is more limited.
On older hardware, Junction falls back to the host kernel
(tgkill() and rt_sigreturn()) for signals. Junction also
relies on features in recent Mellanox NICs (ConnectX-5 and
later) to reduce buffer memory consumption and make polling

scalable, but can still support other NICs with potentially
higher memory use and less scalability.

In the future, Junction could benefit from additional hard-
ware support. For example, Junction could take advantage of
the ability to handle CPU exceptions in userspace without
involving the host kernel, as discussed in §6.1 and below.

Host kernel platform. Building Junction on Linux has many
advantages. However, better security might be achievable
by adopting a clean-slate approach, creating a purpose-built
kernel for Junction’s restricted host kernel interface. Such a
kernel could be extremely minimal and even formally verified,
reducing the chances of an exploit. uKVM provides a monitor
similar to this idea for the Solo5 library OS [64], and we plan
to investigate this for Junction in future work.

Another interesting tradeoff that such a platform could al-
low us to investigate is whether Junction should use Intel’s
VT-x and EPT extensions. An advantage could be that it
would enable Junction to manipulate its page table and handle
CPU exceptions directly, further reducing its reliance on the
host kernel. Indeed, Dune demonstrates that these extensions
can be configured in a way that maintains a process-like envi-
ronment (i.e., not a full VM) [5]. However, this would incur
extra costs when entering and exiting the host kernel.

Performance isolation. Providing performance isolation
across tenants is a challenging and important goal for cloud
providers. Tenants can contend for CPU time, memory,
network bandwidth, and microarchitectural CPU resources
(caches, memory bandwidth, etc.). Junction is in a good po-
sition to handle this because it builds on Caladan, which
already controls multiple forms of microarchitectural CPU
interference [15]. While not in our current prototype, Junc-
tion’s centralized core scheduler can easily implement priority
scheduling and enforce CPU shares, and Linux cgroups can
be used to enforce memory allocation limits. Finally, network
bandwidth allocation can be offloaded to the NIC (§4).

10 Conclusion
This paper presented Junction, a system that retains the

performance benefits of kernel bypass while scaling to thou-
sands of instances and maintaining compatibility with exist-
ing Linux applications. Junction uses kernel bypass hardware
(NIC queues and CPU features) to reduce its reliance on the
host kernel, and it restricts the host kernel interface to enable
efficient resource multiplexing with a minimal attack surface.
It exploits a variety of advanced NIC features and scheduler
optimizations to enable higher density. It also adapts OS sub-
systems to a kernel bypass setting and reduces system call
overheads to maintain compatibility without sacrificing per-
formance. Our evaluation shows that Junction can bring large
benefits to existing applications without modifications, deliv-
ering superior tail latency, throughput, CPU efficiency, and
density relative to state-of-the-art kernel bypass and cloud
isolation systems.

Acknowledgements
We thank our shepherd Kostis Kaffes, the anonymous re-

viewers, Frans Kaashoek, Robert Morris, and other members
of the MIT PDOS group for their helpful feedback. This work
was funded in part by a Facebook Research Award; a Google
Faculty Award; the DARPA FastNICs program under contract
#HR0011-20-C-0089; the NSF under award CNS-2104398
and CNS-2212099; and VMware.

A UIPI Support
Junction uses UIPIs to support preemptive core allocation,

timeslicing, and realtime POSIX signals between uThreads in
the same instance. UIPIs are a recent Intel CPU feature that
allow IPIs to be directly sent and received in userspace. At the
time of writing, UIPI support is not yet a part of the mainline
Linux Kernel, but Intel has proposed a patchset to add support
for it [38]. Junction’s design (e.g., the assumption that one
kThread runs on a core at a time) unlocks simplifications to
host kernel support for UIPI that diverge from this patchset.
Therefore, we implemented UIPI support from scratch as a
small Linux Kernel module (§7) that is integrated with the
central core scheduler.
Hardware interface. UIPIs build upon Intel’s existing posted
interrupt hardware, which was used previously to deliver in-
terrupts directly into VMs without involving the host ker-
nel. UIPIs instead allow IPIs to be sent between normal OS
threads (kThreads in Junction) without going through the
host kernel. Each interrupt receiver (i.e., a thread or vCPU)
is associated with a posted interrupt descriptor in memory,
which serves as a link between the interrupt sender and re-
ceiver. When the receiver is scheduled on a core, the host
kernel configures the core with several pieces of information:
(1) the address of the receiver’s descriptor, (2) a physical
interrupt vector to use for posted interrupts, and (3) the han-
dler (or guest interrupt vector) that should be invoked when
a posted interrupt is received. At the same time, the host ker-
nel writes information about the core into the descriptor (i.e.,
its APIC ID and the physical interrupt vector). This allows
a sender to send interrupts by only referencing a receiver’s
descriptor, which can be inspected by the CPU at send time
to find up-to-date information about which core is running
the receiver.

The ability to send UIPIs is restricted by target tables man-
aged by the host kernel, which enumerate the addresses of
descriptors that a thread is allowed to send to. To send a UIPI,
a program invokes the SENDUIPI instruction with an operand
that indexes this table. When this instruction is invoked, hard-
ware writes a pending interrupt flag to the target descriptor.
It then inspects the descriptor to determine whether or not to
send an IPI—if another interrupt is pending or the receiver
is not running, it skips sending an IPI. Otherwise, it uses the
information in the descriptor to deliver an IPI to the receiver’s
core. When a core receives an interrupt on its posted interrupt

vector, it inspects its current descriptor for pending interrupts
and delivers them to the receiver.

UIPI Driver. UIPI support for Junction is managed by its
UIPI kernel module. The kernel module receives notifications
from the core scheduling kernel module whenever a core
is reallocated, so it can appropriately program the core for
the next running kThread. Junction does not need to send
IPIs to inactive Junction kthreads, so we opt to use a single
interrupt descriptor for each core, instead of using one for
each kThread. Each Junction instance is provisioned with its
own target table for SENDUIPI with one entry for each core’s
descriptor. Rows that correspond to cores actively allocated
to this Junction instance are marked as valid, and all other
rows are invalidated. The core scheduler’s target table gives
it permission to interrupt any core on the machine so it can
use SENDUIPI when it needs to send an IPI. To correctly
implement support for UIPIs, the driver must interpose on
all context switches and system call entry and exit points for
Junction kthreads. It does so by registering itself for callbacks
through the Linux Kernel’s lightweight tracepoint system.

How Junction uses UIPIs. Both the scheduler and the Junc-
tion kernel can send UIPIs to kick cores that are running
kThreads and force them into the Junction kernel’s handler.
The handler determines the reason for the IPI and performs
the appropriate action (e.g., rescheduling uThreads, scanning
network queues, or yielding the core).

Junction’s core scheduler uses IPIs to notify kThreads when
their core is being revoked or when a uThread running on the
core has exceeded its timeslice. This works well when the
scheduler needs to send just a single IPI at a time. However,
because the scheduler implements microsecond-scale schedul-
ing, it often needs to send multiple IPIs. While the interrupt
controller supports IPI multicasting, a feature that reduces
the cost of sending multiple IPIs, there is no instruction that
exposes this functionality to userspace.

Our workaround is to take advantage of the fact that any
interrupt sent on a core’s posted interrupt vector can trigger
user interrupt handlers on the receiving side. We mapped
the interrupt descriptors for each core into the scheduler’s
memory so it can directly post the interrupt information, and
exposed a custom system call through the UIPI kernel module
that sends a multicast interrupt on the posted interrupt vector
(we use the same vector on all cores). Upon receipt of the
interrupt, hardware observes the interrupt in the descriptor
and transfers control to the userspace interrupt handler. This
approach still requires the scheduler to perform a system
call, but this cost is amortized across multiple interrupts. If
necessary, the APIC could be exposed directly to the scheduler
in the future since it is a trusted component. The receiver side
still benefits because it avoids interacting with the kernel.

Register saving. uThreads that are interrupted by UIPIs must
save their registers as well as extended CPU state, which in-
cludes all vector registers and can total many kilobytes. x86

provides an instruction pair, XSAVE and XRSTOR, that can be
used in usermode to save and restore extended CPU states. It
also provides two variants of XSAVE that aim to reduce over-
head. XSAVEOPT avoids saving states that were not modified
since the previous XRSTOR, while XSAVEC reduces memory
fragmentation by saving to a compacted memory layout. Both
instructions save only active states. Intel warns that XSAVEOPT
is not recommended for user applications, because it is pos-
sible for the processor to mistakenly correlate save/restore
pairs between different applications [26]. We invested some
effort to ensure that XSAVEOPT was only used when it was
paired with a correct XRSTOR, however, we found that XSAVEC
was just as fast as XSAVEOPT, so Junction uses this instruction
when saving extended states.

Interactions with system calls. POSIX signals delivered
during a blocking interruptible system call should cause the
system call to return immediately with an error, so that sig-
nal handlers can run without delay. Junction must support
this at two levels. First, system calls that block inside the
Junction kernel (e.g., blocking network socket reads) must
be unblocked by signals. Each uThread in Junction has an
atomic flag that is used to coordinate blocking with wake-
ups from signal senders. Second, a uProc system call that
results in a host kernel system call (e.g., mmap()) must also
be unblocked when a signal is sent. Junction’s UIPI kernel
module handles this by redirecting the local core’s posted
interrupt vector whenever a Junction kThread enters a Linux
system call. This causes future interrupts on this vector (i.e.,
those sent by SENDUIPI or multicast) to be delivered to the
kernel module. Because the centralized core scheduler assigns
kThreads to cores with exclusive grants, the kernel module is
able to easily locate and wake up the blocked kThread.

Evaluation. We examined the impact of UIPIs on core al-
location, timeslicing, and inter-thread signalling. We found
that it only marginally improved latency and efficiency when
replacing Linux signals for preempting kThreads to reallocate
cores. We also have yet to find any real-world applications that
use signals frequently enough to benefit from the speedups
of UIPIs. We did observe, however, a significant reduction
in overhead for Junction’s uThread timeslicing. In Figure 9,
we measure this overhead for a range of scheduler quanta
with UIPIs and Linux signals. We observe that UIPIs reduce
timeslicing overhead by an average of 2.35×. In practice,
this unlocks the ability to timeslice uThreads at much finer
granularity, which is beneficial for reining in the tail latency
of microsecond-scale workloads with high service time dis-
persion [9, 27, 29].

B Buffer Management
Keeping the buffer memory footprint of a kernel bypass

application low is critical for density. To address this, Junction
leverages two NIC hardware features simultaneously—shared
buffer queues and multi-packet receive buffers.

0 20 40 60 80 100 120 140
Preemption Interval (μs)

0

5

10

15

20

25

30

W
or

kl
oa

d
slo

wd
ow

n
(%

)

UIPIs
Linux signals

Figure 9: Comparison of preemption overheads for UIPIs versus
Linux signals for a synthetic workload performing square root com-
putations. UIPIs on average reduce slowdowns by 2.35×.

Using a shared buffer queue with per-core receive queues
introduces the need to coordinate across cores. Posting buffers
to the shared buffer queue involves two steps: writing the
buffer address into an available descriptor in the queue, and
advancing the index pointer forward to notify the NIC that
the descriptor is ready. When a core receives a packet on
its receive queue, it can immediately refill the correspond-
ing descriptor in the shared buffer queue with a new buffer.
However, it must wait to update the index pointer because the
preceding buffers may have not yet been received by other
cores. Therefore, if a core is slow to poll its receive queue, it
could stall the entire buffer posting process.

Using multi-packet buffers adds additional complexity,
since posted contiguous buffers are split into many smaller
packets and distributed to multiple cores. In addition to coor-
dinating updates to the index pointer, cores must coordinate
(A) when to refill an individual descriptor, which cannot hap-
pen until all of its individual packets are delivered; and (B)
when to mark a buffer as eligible to be reposted, which can-
not happen until packet processing has freed each individual
packet in that buffer.

Prior work on ShRing also explored using these hardware
features, but for a different goal of optimizing DDIO cache us-
age [45]. The authors argued for hardware changes to enable
efficient coordination. They proposed out-of-order posting
to shared buffer queues, to prevent a busy core from delay-
ing freeing slots. Instead, other cores can continue to supply
buffers to the NIC without waiting. This change is coupled
with a change to reduce the high cost of reference counting
buffers. Their solution is for the hardware to batch multiple
packets into a single buffer, but not deliver multiple packets
within one buffer to multiple cores. Instead, a buffer becomes
associated with a core when the first packet is delivered, and
only future deliveries to that core can use the buffer.

To the contrary, Junction shows that low coordination over-
head can be achieved with existing hardware (i.e., without
these changes). First, Junction relies on both UIPIs and work

stealing across kThread receive queues to ensure that pro-
cessing delays cannot starve the shared buffer queue. Second,
Junction’s per-core reference counting reduces synchroniza-
tion overhead by allowing kThreads to update reference coun-
ters without frequently modifying shared cache lines.

When a kThread receives a packet, it increments a core-
local counter corresponding to the packet’s descriptor by the
number of bytes consumed. Once the sum of the per-core
counters is equal to the full size of the buffer, no further data
can be written, so it is safe to replenish the slot with a new
buffer. Similarly, after a packet is dequeued from the NIC, it
undergoes protocol processing and is delivered to the appli-
cation. Eventually, a core frees a packet by incrementing its
local counter corresponding to the buffer backing the packet.
Once all the packets in a buffer are free, the buffer can be
reused. The scheduler core monitors the number of posted
buffers and sends a notification over shared memory when
the queue needs to be refilled. This notification triggers a
high-priority refill thread that is responsible for managing
the shared buffer queue, which collects the reference counter
sums and refills the queue. This thread’s logic is shown in
algorithm 1.

C Additional Benchmarks

C.1 Threading & Networking
In this section, we evaluate the performance of Junction’s

threading and networking primitives.

Threading microbenchmarks. Figure 10a shows a set of
microbenchmarks that measure the performance of several
common threading operations. We use the same binary for
each system except Caladan, which required a custom im-
plementation due to its lack of compatibility. Each operation
is performed in a loop for 1,000,000 iterations to determine
the time per operation. The GetPID benchmark measures the
baseline cost of performing a syscall (getpid()). In Junc-
tion, syscalls are replaced with function calls, resulting in low
overheads (≈ 10 ns). Linux, Firecracker, and gVisor pay a
penalty for switching between user and kernel mode, while
gVisor pays additional penalties for its system call intercep-
tion techniques.

Yield and SpawnJoin measure overheads of the threading
subsystems. Relative to Caladan, Junction can context switch
between threads nearly as fast, but pays additional costs for
thread creation and teardown because of POSIX compatibility
and support for TLS—each thread must allocate and initialize
thread local variables when created. CondVar and Pipe mea-
sure the costs of synchronizing two threads using condition
variables and pipes; the Poll benchmark does the same but
uses poll() on non-blocking pipes. In most cases, Junction
fares at least an order of magnitude better than the systems
that rely on kernel crossings. Caladan’s performance on the
CondVar benchmark is slightly better than Junction’s in part

Algorithm 1: Refill Pool Algorithm

1 Function RefillPool():
2 // Refill free slots in the shared queue
3 while true do
4 index← CompletedBufs mod |RQ|
5 cnt← 0
6 foreach cpu do
7 cnt += SlotCompletions[cpu][index]
8 end
9 if cnt = PKTS_PER_BUF then

10 ResetSlotRefs(index)
11 BusyBufs.append(SharedQ[index])
12 SharedQ[index]← FreeBufs.pop()
13 CompletedBufs += 1
14 else
15 break
16 end
17 end
18 // Find free buffers
19 foreach buf in BusyBufs do
20 index← index_of(buf)
21 cnt← 0
22 foreach cpu do
23 cnt += BufCompletions[cpu][index]
24 end
25 if cnt = PKTS_PER_BUF then
26 ResetBufRef(index)
27 FreeBufs.push(buf)
28 BusyBufs.erase(buf)
29 end
30 end

due to its ability to inline synchronization functions (while in
Junction these calls must traverse the trampoline page).
PARSEC. We now show how these threading primitives trans-
late to Junction’s end-to-end performance in the PARSEC
benchmark suite [7], which consists of a set of compute-bound
applications that exhibit high degrees of parallelism with vary-
ing synchronization strategies. Figure 11 shows the time taken
to execute each PARSEC benchmark relative to Linux. As
expected, due to the low overall frequency of system calls,
Junction, Firecracker, and gVisor achieve mostly comparable
performance to Linux. However, in benchmarks where there
is heavier thread synchronization, Junction outperforms Fire-
cracker and gVisor because of its better load balancing and
more efficient system calls.
TCP Microbenchmarks. We evaluate the performance of
Junction’s kernel bypass networking and TCP/IP stack using
the standard netperf benchmark (TCP-Stream and TCP-RR).
For each experiment, we use a single flow and configure each
system with a single thread (but do not restrict SoftIRQ pro-
cessing on other cores). We use the same binary for every
system but Caladan, for which we wrote a compatible imple-

GetPID ∗ Yield Spawn
Join

CondVar
PingPong

Pipe ∗ Poll ∗

0.01

0.1

1

10

100

Ti
m

e
(μ

s)

(∗ not supported by Caladan)

Caladan
Junction

Firecracker
gVisor

Linux

(a) Thread benchmark.

TCP-Stream
0

50

100

150

Th
ro

ug
hp

ut
(G

bp
s)

TCP-RR
0

25

50

75

100
TX

 R
at

e
(1

00
0

TX
/s

)

(b) Networking benchmark.

Figure 10: Performance comparison with threading and network-
ing microbenchmarks. On most threading benchmarks, Junction
improves performance nearly 10× relative to non-kernel bypass
systems. Junction is also able to to sustain TCP throughputs of up
to 146Gbps with a single flow on a single core, a 2.2× improve-
ment over Linux. Junction’s low overhead network stack enables it
to achieve high transaction rates (100,000 messages per second), a
3.2–6.0× speedup over Firecracker and gVisor.

Bla
cks
cho

les

Bo
dy
tra
ck

Ca
nn
ea
l

De
du
p

Fac
esi
m

Fer
ret

Flu
ida
nim

ate

Fre
qm
ine

Str
ea
mc
lus
ter

Sw
ap
tio
ns Vip

s
X2
64

0.00

0.25

0.50

0.75

1.00

1.25

Sp
ee

du
p

Junction gVisor Firecracker

Figure 11: PARSEC benchmark speedup, normalized to Linux. Junc-
tion is able to offer comparable performance to Linux, while other
systems perform worse in situations with heavier synchronization.

mentation. This benchmark runs between two machines that
are connected back-to-back with a 200GbE link.

The TCP-Stream benchmark measures data transfer rates.
Figure 10b shows that Junction and Caladan are able to
achieve 146 and 154 Gbps respectively, greater than 2.2× the
performance of the next best system (Linux). Junction’s im-
provements are even more pronounced relative to Firecracker
and gVisor, improving throughput 5.4–7.1×.

TCP-RR benchmarks the request/response rate which is
determined by the round trip latency between two TCP stacks.
Both Junction and Caladan achieve close to 100,000 transac-
tions per second, indicating a round trip time of 10 µs. Linux
adds marginal overhead with round trip times of 11 µs. Fire-
cracker and gVisor, however, have 32 µs and 60 µs latencies
respectively. They both use TAP devices for networking, re-

0

5

10

La
te

nc
y

P5
0

(m
s) containerd

Junction

0 2K 4K 6K 8K 10K 12K
Offered Load (Requests/s)

0

5

10

La
te

nc
y

P9
9

(m
s)

Figure 12: Benefits of using Junction in an end-to-end experiment
with the serverless framework faasd. Accelerating each component
in the system using Junction leads to compounding benefits for tail
latency and throughput, with 3.5× lower tail latency and 10× higher
total system throughput.

sulting in additional scheduling and processing hops on top
of Linux.

C.2 FaaS Benchmark

We also evaluate the end-to-end performance of Junction
with a cloud framework to study the impact of adopting it
across a distributed system instead of just one application. We
use faasd [11], an open source serverless orchestration frame-
work based on OpenFaaS [41]. faasd uses Linux containers
to sandbox untrusted user applications, deployed by contain-
erd [8]. It includes two orchestration services written in Go:
a front-end load balancer and a per-host provider that com-
municates with containerd. To demonstrate the performance
benefits of Junction, we replace containerd with junctiond, a
C++ component that manages local instances of Junction. We
also run the two orchestration services inside Junction. We
evaluate the setup using invocations of a serverless function
from vSwarm [59,63] that encrypt a 600 byte input with AES.
We do not evaluate cold-starts here, but we separately profiled
the startup costs for a single-threaded Junction instance and
found that Junction takes 3.4ms to initialize. These exper-
iments used two machines with 10 core Xeon 4114 CPUs
running at 2.2GHz, 48GB of RAM, and 100GbE NICs.

Figure 12 shows the median and tail latency across varying
request rates offered via the front-end load balancer. Junction
can sustain up to 10× more throughput while lowering the
latency by ∼ 2× at the median and ∼ 3.5× at the tail. This
reflects the compounding end-to-end benefit of using Junction
across multiple components running in separate instances.
More discussion of the faasd architecture and this experiment
are available in [54].

References

[1] Alexandru Agache, Marc Brooker, Andreea Florescu,
Alexandra Iordache, Anthony Liguori, Rolf Neugebauer,
Phil Piwonka, and Diana-Maria Popa. Firecracker:
Lightweight Virtualization for Serverless Applications.
In NSDI, 2020.

[2] Amazon Web Services. The Security Design of the
AWS Nitro System: AWS Whitepaper. Technical report,
November 2022.

[3] Anjali, Tyler Caraza-Harter, and Michael M. Swift.
Blending Containers and Virtual Machines: A Study
of Firecracker and GVisor. In VEE, 2020.

[4] Jonathan Behrens, Adam Belay, and M. Frans Kaashoek.
Performance evolution of mitigating transient execution
attacks. In EuroSys, 2022.

[5] Adam Belay, Andrea Bittau, Ali José Mashtizadeh,
David Terei, David Mazières, and Christos Kozyrakis.
Dune: Safe User-level Access to Privileged CPU Fea-
tures. In OSDI, 2012.

[6] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In OSDI, 2014.

[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh,
and Kai Li. The PARSEC Benchmark Suite: Characteri-
zation and Architectural Implications. In PACT, 2008.

[8] containerd. containerd overview, 2023.

[9] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich,
Marios Kogias, Boon Thau Loo, Linh Thi Xuan Phan,
and Irene Zhang. When Idling is Ideal: Optimizing Tail-
Latency for Heavy-Tailed Datacenter Workloads with
PerséPhone. In SOSP, 2021.

[10] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exoker-
nel: An Operating System Architecture for Application-
Level Resource Management. In SOSP, 1995.

[11] faasd. A lightweight & portable FaaS engine, 2023.

[12] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmo-
hta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg.
Azure Accelerated Networking: SmartNICs in the Pub-
lic Cloud. In NSDI, 2018.

[13] Brad Fitzpatrick. Distributed caching with memcached.
Linux journal, 2004.

[14] Linux Foundation. Data Plane Development Kit
(DPDK), 2015.

[15] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. Caladan: Mitigating Interference at Mi-
crosecond Timescales. In OSDI, 2020.

[16] Alexander Fuerst, Stanko Novaković, Íñigo Goiri, Go-
har Irfan Chaudhry, Prateek Sharma, Kapil Arya, Kevin
Broas, Eugene Bak, Mehmet Iyigun, and Ricardo Bian-
chini. Memory-Harvesting VMs in Cloud Platforms. In
ASPLOS, 2022.

[17] Google. gVisor Documentation, 2019.

[18] Google. gVisor Gofer Syscalls, 2022.

[19] Google. gVisor Sentry Syscalls, 2023.

[20] Boncheol Gu, Andre S Yoon, Duck-Ho Bae, Insoon Jo,
Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moon-
sang Kwon, Chanho Yoon, Sangyeun Cho, et al. Biscuit:
A framework for near-data processing of big data work-
loads. In ISCA, 2016.

[21] Sangjin Han, Scott Marshall, Byung-Gon Chun, and
Sylvia Ratnasamy. MegaPipe: A New Programming
Interface for Scalable Network I/O. In OSDI, 2012.

[22] Steven Hand, Andrew Warfield, Keir Fraser, Evangelos
Kotsovinos, and Daniel J Magenheimer. Are Virtual
Machine Monitors Microkernels Done Right? In HotOS,
2005.

[23] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule,
Ofir Weisse, Barret Rhoden, Josh Don, Luigi Rizzo,
Oleg Rombakh, Paul Turner, and Christos Kozyrakis.
GhOSt: Fast & Flexible User-Space Delegation of Linux
Scheduling. In SOSP, 2021.

[24] Takayuki Imada. Mirageos unikernel with network
acceleration for iot cloud environments. In ICCBDC,
2018.

[25] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual - Volume 2B, December
2022.

[26] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual - Volume 1, June 2023.

[27] Rishabh Iyer, Musa Unal, Marios Kogias, and George
Candea. Achieving Microsecond-Scale Tail Latency
Efficiently with Approximate Optimal Scheduling. In
SOSP, SOSP ’23, New York, NY, USA, 2023.

[28] Eun Young Jeong, Shinae Woo, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. MTCP: A Highly Scalable User-Level
TCP Stack for Multicore Systems. In NSDI, 2014.

[29] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive Scheduling for µSecond-Scale
Tail Latency. In NSDI, 2019.

[30] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Datacenter RPCs Can Be General and Fast. In NSDI,
2019.

[31] Svilen Kanev, Juan Pablo Darago, Kim M. Hazelwood,
Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon
Wei, and David M. Brooks. Profiling a warehouse-scale
computer. In ISCA, 2015.

[32] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr. Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP Acceleration as an OS
Service. In EuroSys, 2019.

[33] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Na-
dav Har’El, Don Marti, and Vlad Zolotarov. OSv: Opti-
mizing the Operating System for Virtual Machines. In
USENIX ATC, 2014.

[34] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre,
Sharan Santhanam, Alexander Jung, Gaulthier Gain,
Cyril Soldani, Costin Lupu, Ştefan Teodorescu, Costi
Răducanu, et al. Unikraft: fast, specialized unikernels
the easy way. In EuroSys, 2021.

[35] H.J. Lu, Michael Matz, Jan Hubicka, Andreas Jaeger,
and Mark Mitchell. System V Application Binary In-
terface. AMD64 Architecture Processor Supplement,
2018.

[36] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache craftiness for fast multicore key-value storage. In
EuroSys, 2012.

[37] Ilias Marinos, Robert N.M. Watson, and Mark Hand-
ley. Network Stack Specialization for Performance. In
SIGCOMM, 2014.

[38] Sohil Mehta. x86 User Interrupts support, 2021.
Available at https://lore.kernel.org/lkml/
20210913200132.3396598-1-sohil.mehta@intel.
com/.

[39] Jeff Meyerson. The Go programming language. IEEE
software, 31(5):104–104, 2014.

[40] Node.js. Node.js, 2023.

[41] OpenFaaS. Serverless functions made simple, 2023.

[42] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achiev-
ing high cpu efficiency for latency-sensitive datacenter
workloads. In NSDI, 2019.

[43] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita
Kejriwal, Collin Lee, Behnam Montazeri, Diego Ongaro,
Seo Jin Park, Henry Qin, Mendel Rosenblum, Stephen
Rumble, Ryan Stutsman, and Stephen Yang. The ram-
cloud storage system. ACM Trans. Comput. Syst., 33(3),
aug 2015.

[44] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The Operating System Is
the Control Plane. In OSDI, 2015.

[45] Boris Pismenny, Adam Morrison, and Dan Tsafrir.
ShRing: Networking with Shared Receive Rings. In
OSDI, 2023.

[46] Donald E Porter, Silas Boyd-Wickizer, Jon Howell,
Reuben Olinsky, and Galen C Hunt. Rethinking the
library OS from the top down. In ASPLOS, 2011.

[47] George Prekas, Marios Kogias, and Edouard Bugnion.
ZygOS: Achieving Low Tail Latency for Microsecond-
scale Networked Tasks. In SOSP, 2017.

[48] George Prekas, Mia Primorac, Adam Belay, Christos
Kozyrakis, and Edouard Bugnion. Energy proportional-
ity and workload consolidation for latency-critical appli-
cations. In Proceedings of the Sixth ACM Symposium on
Cloud Computing, SoCC ’15, page 342–355, New York,
NY, USA, 2015. Association for Computing Machinery.

[49] Ron Pressler. On the performance of user-mode threads
and coroutines, 8 2020. Accessed: September 2023.

[50] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and
John Ousterhout. Arachne: Core-Aware Thread Man-
agement. In OSDI, 2018.

[51] Will Reese. Nginx: the high-performance web server
and reverse proxy. Linux Journal, 2008.

[52] Luigi Rizzo. netmap: a novel framework for fast packet
I/O. In USENIX Security, 2012.

[53] Rocket. Rocket, 2016.

[54] Enrique Saurez, Joshua Fried, Gohar Irfan Chaudhry,
Esha Choukse, Íñigo Goiri, Sameh Elnikety, Adam Be-
lay, and Rodrigo Fonseca. Junctiond: Extending FaaS
Runtimes with Kernel-Bypass, March 2024.

[55] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-
Malek, and John Wilkes. Omega: Flexible, scalable
schedulers for large compute clusters. In EuroSys, 2013.

https://lore.kernel.org/lkml/20210913200132.3396598-1-sohil.mehta@intel.com/
https://lore.kernel.org/lkml/20210913200132.3396598-1-sohil.mehta@intel.com/
https://lore.kernel.org/lkml/20210913200132.3396598-1-sohil.mehta@intel.com/

[56] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bag-
dasaryan, Christina Delimitrou, Robbert Van Renesse,
and Hakim Weatherspoon. X-containers: Breaking
down barriers to improve performance and isolation
of cloud-native containers. In ASPLOS, 2019.

[57] Mike Stemle. The State of Serverless, 2023.

[58] Tomcat. Tomcat, 1999.

[59] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, and
Edouard Bugnionand Boris Grot. Benchmarking, anal-
ysis, and optimization of serverless function snapshots.
In ASPLOS, 2021.

[60] Guido Van Rossum and Fred L. Drake. Python 3 Refer-
ence Manual. CreateSpace, Scotts Valley, CA, 2009.

[61] George Varghese and Anthony Lauck. Hashed and hi-
erarchical timing wheels: efficient data structures for
implementing a timer facility. IEEE/ACM transactions
on networking, 5(6):824–834, 1997.

[62] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
Scale Cluster Management at Google with Borg. In
EuroSys, 2015.

[63] vSwarm. Serverless benchmarking suite, 2023.

[64] Dan Williams and Ricardo Koller. Unikernel Moni-
tors: Extending Minimalism Outside of the Box. In
HotCloud, 2016.

[65] Dan Williams, Ricardo Koller, and Brandon Lum. Say
goodbye to virtualization for a safer cloud. In HotCloud,
2018.

[66] Kenichi Yasukata, Hajime Tazaki, Pierre-Louis Aublin,
and Kenta Ishiguro. zpoline: a system call hook mecha-
nism based on binary rewriting. In USENIX ATC, 2023.

[67] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk
Olynyk, Jacob Nelson, Omar S. Navarro Leija, Ash-
lie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay
Jayakar, Pedro Henrique Penna, Max Demoulin, Piali
Choudhury, and Anirudh Badam. The Demikernel Data-
path OS Architecture for Microsecond-Scale Datacenter
Systems. In SOSP, 2021.

[68] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal,
Vrigo Gokhale, and John Wilkes. CPI2: CPU perfor-
mance isolation for shared compute clusters. In EuroSys,
2013.

	Introduction
	Background & Motivation
	Junction Overview
	Security
	Threat Model
	Host Kernel Isolation

	Optimizing for Density
	Minimizing Buffer Memory Consumption
	Scalable Queue Polling

	Linux Compatibility
	Adapting OS Features to Kernel Bypass
	Performance Optimizations

	Implementation
	Evaluation
	Methodology
	Comparison to other kernel bypass systems
	Density
	Compatibility
	Attack Surface
	Performance Analysis

	Discussion
	Conclusion
	UIPI Support
	Buffer Management
	Additional Benchmarks
	Threading & Networking
	FaaS Benchmark

