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ABSTRACT
Latency-critical `s-scale data center applications are suscepti-

ble to server load spikes. The issue is particularly challenging

for services using long-lived TCP connections. This paper

introduces Capybara, a highly efficient and versatile live

TCP migration system. Capybara builds atop a deterministic,

kernel-bypassed TCP stack running in a library OS to realize

its `s-scale TCP migration mechanism. Using modern pro-

grammable switches, Capybara implements migration-aware

dynamic packet forwarding and transient packet buffering,

further reducing system interference during live TCP mi-

gration. Capybara can transparently migrate a running TCP

connection in 4 `s on average. It improves the average mi-

gration host latency by about 12 times compared to a Linux

kernel-based solution.

CCS CONCEPTS
• Software and its engineering → Operating systems; •
Networks→ In-network processing; Programmable net-
works.
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1 INTRODUCTION
Modern data center networks have made dramatic improve-

ments in network latency. The latest Ethernet fabrics can de-

liver a packet with single-digit microsecond latencies, while
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modern kernel-bypassing network stacks [2, 12, 15, 22, 26]

provide sub-microsecond TCP processing. For data center

applications, such advances should herald a new era of ultra-

low median response time and predictable, `s-scale tail la-

tency [4, 17, 24, 27]. Yet these ambitious performance goals

remain elusive. Unpredictable workload skews, traffic bursts,

and dynamic resource contention prevent applications from

reaping the benefits of microsecond-scale data center hard-

ware and networking stacks.

In principle, load balancers offer a way for scale-out ser-

vices to mitigate the effects of workload skew on tail latency.

Such load balancers [5, 16, 21] and frontend proxies [8, 9, 18]

are near ubiquitous in data centers. Concurrently, recent

research [10, 13, 14] has made great strides in achieving

predictable load balancing for microsecond-scale workloads

by dynamically routing individual requests. However, a key

mismatch prevents their benefits from being realized in pro-

duction systems: load balancers for connection-oriented pro-

tocols like TCP – which are nearly universally used in the

data center – can only statically assign entire connections to

backend servers, which is insufficient to ensure consistent

microsecond-scale latency.

The ability to efficiently migrate TCP connections would

permit load balancers to change server assignments between

each request, unshackling them from the assignment they

made at setup time. Unfortunately, while live migration of

TCP connections has been explored in the past [9, 23], ex-

isting systems impose substantial latency overhead. These

systems run a complex hand-off between servers to correctly

transfer connection state without breaking an active TCP

connection. The resulting latency overhead was tolerable

for the original TCP migration use case – allowing mobile

devices to seamlessly move between networks – but not for

`s-scale data center applications. Even more recent work,

aimed at load balancing, has enough overhead that migration

itself will worsen system latency. For example, Prism [9] re-

quires more than 45 `s to migrate a TCP connection, which is

about 3 times the average network latency between servers

in modern data centers.

Canwemigrate live TCP connections at microsecond scale?
We answer this question with Capybara, the first TCP migra-

tion system capable of microsecond migration latencies in

the modern data center environment. Capybara, leverages

three key design insights to achieve our goal of reducing

https://doi.org/10.1145/3609510.3609813
https://doi.org/10.1145/3609510.3609813


APSys ’23, August 24–25, 2023, Seoul, Republic of Korea Choi et al.

tail latencies for microsecond-scale data center applications.

First, we co-design a microsecond-scale TCP stack [26] with

high-performance programmable switches to perform dy-

namic load balancing of live TCP connection between servers,

while maintaining microsecond tail latencies. Next, Capy-

bara’s custom TCP stack leverages determinism – a common

distributed systems property, but one that is unusual for

TCP implementations – to efficiently migrate TCP connec-

tion state. This determinism lets Capybara treat its TCP stack

as a deterministic state machine, which can be easily moved

or replicated, while reasoning about its correctness. Finally,

Capybara uses programmable switches as a centralized com-

ponent capable of monitoring server load and providing

transient state management and migration-aware packet

routing during migration. This in-network approach min-

imizes the impact of live migration (e.g., packet drops and

retransmissions) and ensures correctness of TCP processing.

Our preliminary evaluation shows that Capybara can mi-

grate a TCP connection in 4 `s on average. This is a 12x im-

provement over existing Linux-based solutions. With these

latencies, we are able to migrate TCP connections to reduce

tail latencies for modern data center applications with mini-

mal overhead.

2 THE CASE FOR `S-SCALE TCP
MIGRATION

Challenging datacenter workloads. Workload skew is a uni-

versal issue faced by data center applications: web servers [20],

data storage [13], video streaming, caches [19, 25], and the

list goes on. The issue is challenging due to the unpredictable

nature of real-world traffic patterns, both spatially and tem-

porally. If not handled properly, skewed workloads easily

cause load imbalance across servers, leading to degraded

service response time. The challenge is particularly daunt-

ing for modern applications with `s-scale latency service

level objectives (SLOs). Any load balancing issue not resolved

promptly can result in queuing delay that exceeds the latency

agreement.

Switch-based load distribution. Recent work [10, 13, 14]

leverages programmable switches to perform dynamic load

balancing on the data path. The approach achieves strong

load balancing guarantees even for highly skewed and dy-

namic workloads. One caveat of existing solutions is that

they only work for single packet-sized requests over UDP

protocol. However, most deployed data center applications

rely on TCP for reliable message delivery, efficient bandwidth

utilization, and congestion control. Canwe apply similar data

path load balancing techniques to TCP-based applications?

Stateful load balancers. Unfortunately, conventional wis-
dom implies a negative answer. The most widely deployed

load balancing solution for connection-based applications

are stateful L4/L7 load balancers. These solutions, however,

require per-connection consistency (PCC): once a TCP con-

nection is established on a backend server, the load balancer

mustmap the connection flow consistently to the same server.

While effective for flows with uniform load distribution, they

fall short when flow size for each connection fluctuates over

time. Other statistical load distribution solutions [1, 11] share

similar shortcomings.

TCP migration to the rescue? Since load balancing during

connection setup time is not sufficient for `s-scale appli-

cations, can we migrate established TCP connections for

more dynamic load distribution? In fact, Linux already im-

plements a feature called TCP connection repair [3], which

prior work [9] exploits to implement live TCP migration.

However, the high overhead of the kernel TCP stack, coupled

with a blocking-based migration protocol, results in long mi-

gration latency. A slow migration is particularly detrimental

in deployments where network round-trip times (RTTs) are

within a couple tens of `s. Not able to shed load quickly also

results in immediate queue build-ups for our target high-

throughput applications.

Measurement study. To study the impact of migration over-

head on application tail-latency guarantees, we run the fol-

lowing experiments: We deploy two Capybara servers and

150 clients. Each client establishes a TCP connection to one

of the servers and generates HTTP GET requests. For the

client, we use an open-loop and kernel-bypassing HTTP load

generator based on Caladan [6]. During each experiment, we

trigger 10,000 TCP migrations between the two servers. We

simulate different migration overheads by generating addi-

tional delays ranging from 0 to 500 `s during each migration,

and measure the latency of HTTP requests under two dif-

ferent workloads (150K and 170K requests per second). The

experiment results are shown in Figure 1.

When the overhead of TCP migration is below 200 `s, the

99% tail latency of HTTP requests remains below a healthy

500 `s, which is desirable for `s-scale applications. However,

above 200 `s overhead, tail latency increases significantly.

Especially, this negative impact on the tail latency caused by

migration overhead becomes even worse when the workload

is higher due to more requests queuing up during the mi-

gration. The experiment demonstrates that slow migration

can cause significant spikes in tail latency during periods

of high server load, which is exactly the situation in which

migrations are needed.

Live migration of TCP connections also faces other chal-

lenges not addressed by previous solutions. One well-known

challenge in TCP migration is ensuring that packets are not

delivered to a server that does not have the required TCP

state. For example, if the switch starts to forward packets to
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Figure 1: Tail latency as a function of increasing mi-
gration overhead.

a new owner before the state is migrated, the new owner will

generate a TCP RST message, causing the connection to be

aborted. Similarly, if the switch forwards any packets to the

original server after a migration is completed, the original

server may also send a RST. Essentially, during migration

there is a small time-window during which neither of the

servers has the TCP state to serve requests: from the time the

original server migrates out the state, until the new owner

migrates in the state.

3 DESIGN
Capybara aims to transparently migrate TCP connections

with `s-scale overheads, enabling fine-grained load balanc-

ing to decrease tail latencies. Capybara includes a kernel-

bypass `s-scale TCP stack and a load balancer implemented

on a high-performance programmable switch. The Capy-

bara network stack has a deterministic TCP implementation,

based on Demikernel [26], and a novel two-phase commit

protocol to efficiently and atomically migrate TCP connec-

tions while ensuring the correctness of the TCP protocol.

The Capybara load balancer efficiently routes packets to the

correct end-host before and after migration and monitors

load across servers to determine when migration is needed.

Scope and assumptions. Capybara is transparent to the

clients and does not require any client-side modifications.

The current design and implementation of Capybara works

for a single-rack-scale system and supports standard TCP

connections.

3.1 Capybara Overview
The system setup consists of a top-of-rack (ToR) programmable

switch that connects all servers and implements migration

support such as migration-aware dynamic packet forward-

ing. Also, each server uses a kernel-bypassed network stack

supporting standard TCP [26]. The TCP stack enforces de-

terminism by capturing both incoming packets and time and

feeding them into the TCP stack as a state machine. Capy-

bara consists of two main components – (i) in-network load

monitoring and migration management, implemented in a

Ingress 
Parser

1. Lookup src/dst addr in 
Migration Directory keys
2. If matching, re-write src/dst addr 

pkt outL2/L3
Routing

1. Check & update 
Minimum Workload Register
2. Drop

1. Write Migration Directory

1. Read 
Minimum Workload Register
2. Re-write dst addr

TCP

HEARTBEAT

PREPARE-MIG

PREPARE-MIG-ACK

min-workload: X
addr: mac:ip:port 

Minimum Workload Register
Migration Directory

client-ip:port

…

original & current
server - mac:ip:port

…

pkt in

Switch Data Plane Registers

key value

Other Packets

Figure 2: Capybara switch design. The switch main-
tains two data structures in the data plane: 1) migration
directory to manage mapping of each migrated con-
nection and the address of original and current server
of the connection; 2) minimum workload register to
track the server with current minimum workload.

switch-based load balancer; and (ii) a two-phase TCP mi-

gration protocol, implemented in the kernel-bypassing TCP

stack.

3.2 Capybara Load Balancer
To support dynamic TCP migrations across servers, the

switch needs to handle two main tasks: (1) maintaining origi-

nal and current server address information of each migrated

connection, and (2) migration-aware dynamic packet for-

warding. For this purpose, we implement a migration di-

rectory inside the ToR switch as shown in Figure 2. Each

entry of the migration directory is a mapping between a

migrated connection and its original and current server ad-

dresses, which is added or modified in response to requests

from servers that are migrating the connection (§3.3). The

migration directory is implemented as a lookup table where

the lookup key is an identifier of each migrated connection

(e.g., a pair of the IP address and port of the client).

Migration-aware packet forwarding: For every TCP

packet, the switch checks whether the source or destination

address and port pair match any of the keys in the migration

directory. If a packet’s source address and port match a key,

it indicates that the packet is a request for a migrated connec-

tion. Then, the switch reads the address of current server for

this connection from the migration directory, and re-writes

the destination addresses before forwarding. Similarly, if the

destination address and port match a key, then the packet is

a response for a migrated connection, so the switch re-writes

the source address and port.
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The migration directory is implemented as a two-level

hash-based lookup table which essentially consists of two

sets of data plane registers. We perform the lookup as fol-

lows. For each packet, we get a 16-bit hash value of the client

address and port, and this value forms the index in the first

level of the migration directory. At each index, the directory

has a key-value pair. If the key matches the client address

and port, the value (original and current server addresses)

is returned. However, if the key does not match, it means

that we have a hash collision, and we perform the same

lookup in the second level of the directory. While our cur-

rent implementation uses two levels, additional levels could

be implemented as permitted by the available data plane

resources of the switch being used
1
. Also, once the switch re-

ceives the RST packet from a connection, the switch deletes

the corresponding entry from the migration directory.

Tracking the server with the minimum workload:
Additionally, Capybara enables server-load-aware migration

via in-network server-workload tracking. Ideally, for the best

load balancing, the least loaded server should be selected as

the new server when a server tries to migrate out a connec-

tion. As the central point of all servers, the switch is in a

good place to track the server with the minimum workload.

Capybara implements this using a switch data plane register,

named minimum workload register (see Figure 2).

Each server periodically sends a heartbeat message to

the switch with the current workloadmetric value. On receiv-

ing a heartbeat message, the switch checks the minimum

workload register, and updates it if the received workload

value is smaller than the current one in the register.

3.3 Capybara TCP stack
The Capybara TCP stack builds a TCP migration mechanism

on top of the Demikernel TCP stack. To ensure correctness

(i.e., no reordering or loss of packets in the TCP stream), TCP

migration must be atomic: either the connection is owned by

the originating server or by the destination server. To achieve
correct TCP migration, we use a two-phase migration pro-

tocol which performs a handshake between the originating

and destination server.

Once a server decides to initiate a TCP migration (e.g., it

detects that the current workload is higher than a certain

threshold), it selects a connection to migrate out, and sends

a prepare-mig message to the switch.

Phase 1. PREPAREMIGRATIONThe prepare-migmes-

sage carries an identifier of the selected connection (i.e.,

client address) and the original server’s address. Then, the

switch reads the address of current least-loaded server from

1
Our current implementation of two-level migration directory consumes

32.5% of SRAM on an APS BF6064X-T (Intel Tofino-based) programmable

switch.

the minimum workload register, re-writes the destination ad-

dress of the prepare-mig to be the new server, and forwards

it.

When the new server receives the prepare-mig message,

it allocates a temporary buffer for the connection, and replies

back with a prepare-mig-ack. The temporary buffer holds

messages received from the connection, until it completes

migrating in the connection state.

Once the switch receives the prepare-mig-ack, it knows

that the new server is prepared to buffer messages for this

connection, so it can safely start to forward messages from

this connection to the new server. It adds a new entry in the

migration directory with the client address of the connection

as the key and the original and new server addresses as the

value. After this point, the switch forwards packets from this

connection to the new server, following the switch design

in Figure 2. Then, it forwards the prepare-mig-ack to the

original server.

Using the temporary packet buffer on the new server and

migration-aware dynamic packet forwarding at the switch,

Capybara prevents connections from being mistakenly reset

by forwarding packets to the new server only once it is aware

of the migrated connection.

Phase 2. CONNECTION STATE TRANSFER Upon receiv-

ing the prepare-mig-ack, the original server knows that the

new server is ready to migrate in the connection state, and

that the switch is forwarding subsequent messages to the

new server. Finally, before migrating the connection state,

the origin server ensures that there are no outstanding NIC

packet transmissions that depend on the connection’s TX

buffers being present in memory.

Once the original server confirms that all send operations

submitted on the connection have been completed, it pro-

ceeds to migrate the connection state to the new server using

a conn-state message. The state includes all data pending

in both the receive and send buffers. When the new server

receives the conn-statemessage, it processes any messages

in the temporary buffer through the TCP stack, and starts to

serve the connection.

3.4 Capybara architecture
Capybara integrates its TCPmigration protocol with a recent

kernel-bypassing library OS architecture, Demikernel [26].

Demikernel’s library OS architecture provides two important

benefits to Capybara. First, TCP migration, which involves

multiple network stack operations, is supported entirely in

userspace, resulting in significantly lower overheads and

more predictable latencies. Second, userspace libraries are

easier to develop, allowing us to implement more sophisti-

cated customized protocols.



Capybara: `Second-Scale Live TCP Migration APSys ’23, August 24–25, 2023, Seoul, Republic of Korea

Kernel-bypass device

libOS

Application

Network stack (Layer 4)

TCPUDP TCPMig

TCP
1. monitor workload (e.g., 
receive_queue length)
2. initiate migration, 
3. buffer migrated pkts
4. import/export TCP state
…

TCPMig
1. manage migration 
instance & pkt buffer
2. generate/process 
TCPMig msgs
3. track migration steps
…

Capybara

Figure 3: Capybara network stack architecture.

Figure 3 illustrates the implementation of Capybara in-

side the library OS. Capybara adds TCPMig as an additional

Layer 4 protocol to support TCP migration. Capybara also

modifies some of the standard TCP stack (e.g. to support con-

nection serialization/deserialization). The TCP and TCPMig

stacks closely interact with each other to drive and handle

migrations, following the two-phase protocol discussed in

§3.3.

4 PRELIMINARY EVALUATION
Capybara’s host-side stack is implemented with an addition

of ∼1100 lines of Rust code to Demikernel [26], while the

switch implementation consists of ∼1400 lines of P4 code.
We evaluate Capybara on a hardware testbed consisting of an

APS BF6064X-T (Intel Tofino-based) programmable switch

and 3 servers. Each server is equipped with two Intel Xeon

Gold 6226R (32 cores, 2.90GHz) CPUs, 256GB memory and

a Mellanox ConnectX-5 100 GbE NIC.

4.1 Migration Overhead
For a preliminary evaluation of our Capybara system, we

compare the migration overhead of Capybara to an existing

Linux-based approach, Prism. The open-source version of

Prism implements the switch functionality in Linux and

eBPF based software switches. To make a fair comparison,

we implement the Prism switch logic in P4, and run it on

the same Tofino switch. Then, we run a closed-loop client

sending TCP requests to the servers to trigger migrations.

Figure 4a breaks down the average server overhead in

each step of a TCP migration in Prism. Using the Linux

kernel TCP repair API, a single instance of TCP migration

takes more than 40 `s on average. In Figure 4b, we show the

same latency break-down for a TCP migration in Capybara.

Capybara takes full advantage of its kernel-bypass network

stack and its switch co-designed migration protocol. It only

(a) Linux-based solution (Prism). Total latency overhead =
45.7 `s.

(b) Capybara. Total latency overhead = 3.7 `s.

Figure 4: Average server overhead of a TCP migration.
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Figure 5: Distribution of aggregated server overhead
for a migration. We measured the latency of each mi-
gration step for 10,000 times.

incurs less than 4 `s of average server overhead during a

migration, 10× lower than that of the state-of-the-art system.

Moreover, we repeatedly migrate TCP connections for

both Capybara and Prism, and plot the migration latency

distribution in Figure 5. The result shows that Capybara

achieves significantly more stable migration latency than

Prism. Linux-based approaches are vulnerable to scheduling

delays and other forms of interference, which contribute

to high tail-latencies for migration. Capybara avoids this

by incorporating all network stack operations such as TCP

state serialization, into its userspace TCP stack. These results

demonstrate that Capybara provides a promising solution

for TCP migration for `s-scale data center systems.
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5 RELATEDWORK
Capybara is closely related to two lines of research: The

first set are the recent proposals that leverage programmable

network hardware to perform dynamic load balancing. The

second line of research is in stateful load balancers in various

combinations of software and switch hardware.

Content-based routing for load balancing. Many priorworks

have focused on load balancing issues in distributed stor-

age systems. Consistent hashing [11] is a classic approach

which relies on statistical load balancing. Systems such as

Slicer [1] remap data shards dynamically based on load in-

formation but at coarser granularity. SwitchKV [14] and

NetCache [10] leverage in-memory caching to reduce load

hotspots on backend servers. SwitchKV stores caching meta-

data in programmable switches to perform content-based

routing, while NetCache directly stores popular keys in the

switch data plane. Harmonia [28] implements read-write con-

flict detection in switches to enable linearly scalable replica

reads without violating linearizability. Pegasus [13] further

improves storage load balancing by implementing a coher-

ence directory in the switches. The approach enables dy-

namic, load-aware routing for both read and write requests.

Existing switch-based solutions, however, only work for the

UDP protocol with storage requests that fit in a single packet.

Capybara addresses both of the constraints.

Stateful load balancers. There exists a long line of research
on stateful L4 load balancers. Ananta [21] and Maglev [5]

are distributed software-based load balancers targeting data

center-scale deployments. Ananta divides traditional load

balancer responsibilities into a reliable control plane and a

scalable data plane, while Maglev uses a fully distributed

architecture with optimized packet processing. Duet [7]

leverages line-rate processing capability on programmable

switches to accelerate virtual IP (VIP) to direct IP (DIP) trans-

lation. SilkRoad [16] goes a step further by moving the con-

nection table to the switch, eliminating all software compo-

nents while ensuring PCC. As we discussed, stateful load

balancers can only perform load balancing at connection

setup time, a limitation Capybara addresses.

6 CONCLUSION
In this paper, we explore the implication of fast live TCP

migration on `s-scale data center applications. We design

Capybara, a novel co-designed solution combining a kernel-

bypass TCP stack and programmable data plane to enable

transparent TCP connection migration in 4 `s on average,

which is about 12 times faster than a Linux-based solution.

We plan to further extend the design of Capybara, besides

completing the current implementation. One directionwe are

considering is adding TLS support to our system. Capybara

currently also assumes a single ToR switch for its design.

To make our approach more practical, we are looking into

multi-rack and other general scalable designs. Lastly, our

current switch load balancing policies are simple. We plan

to explore more sophisticated scheduling algorithms and

control plane designs in the future.
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